Random Walks in a One-Dimensional L,vy Random Environment

被引:17
|
作者
Bianchi, Alessandra [1 ]
Cristadoro, Giampaolo [2 ]
Lenci, Marco [2 ,3 ]
Ligabo, Marilena [4 ]
机构
[1] Univ Padua, Dipartimento Matemat Pura & Applicata, Via Trieste 63, I-35121 Padua, Italy
[2] Univ Bologna, Dipartimento Matemat, Piazza Porta San Donato 5, I-40126 Bologna, Italy
[3] Sez Bologna, Ist Nazl Fis Nucl, Via Irnerio 46, I-40126 Bologna, Italy
[4] Univ Bari, Dipartimento Matemat, Via E Orabona 4, I-70125 Bari, Italy
关键词
Levy walks; RWRE; Random walks on point processes; Levy-Lorentz gas; Levy environment; Central Limit theorem; Convergence of moments; TRANSPORT-PROPERTIES; LEVY FLIGHTS; RECURRENCE; TRANSIENCE;
D O I
10.1007/s10955-016-1469-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a generalization of a one-dimensional stochastic process known in the physical literature as L,vy-Lorentz gas. The process describes the motion of a particle on the real line in the presence of a random array of marked points, whose nearest-neighbor distances are i.i.d. and long-tailed (with finite mean but possibly infinite variance). The motion is a continuous-time, constant-speed interpolation of a symmetric random walk on the marked points. We first study the quenched random walk on the point process, proving the CLT and the convergence of all the accordingly rescaled moments. Then we derive the quenched and annealed CLTs for the continuous-time process.
引用
收藏
页码:22 / 40
页数:19
相关论文
共 50 条
  • [21] Logarithmic speeds for one-dimensional perturbed random walks in random environments
    Menshikov, M. V.
    Wade, Andrew R.
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2008, 118 (03) : 389 - 416
  • [22] LOCALIZATION OF RANDOM-WALKS IN ONE-DIMENSIONAL RANDOM-ENVIRONMENTS
    GOLOSOV, AO
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 92 (04) : 491 - 506
  • [23] ONE-DIMENSIONAL DIFFUSIONS AND RANDOM-WALKS IN RANDOM-ENVIRONMENTS
    KAWAZU, K
    TAMURA, Y
    TANAKA, H
    [J]. LECTURE NOTES IN MATHEMATICS, 1988, 1299 : 170 - 184
  • [24] NONCONVEX HOMOGENIZATION FOR ONE-DIMENSIONAL CONTROLLED RANDOM WALKS IN RANDOM POTENTIAL
    Yilmaz, Atilla
    Zeitouni, Ofer
    [J]. ANNALS OF APPLIED PROBABILITY, 2019, 29 (01): : 36 - 88
  • [25] AGING AND QUENCHED LOCALIZATION FOR ONE-DIMENSIONAL RANDOM WALKS IN RANDOM ENVIRONMENT IN THE SUB-BALLISTIC REGIME
    Enriquez, Nathanael
    Sabot, Christophe
    Zindy, Olivier
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2009, 137 (03): : 423 - 452
  • [26] Lévy random walks on multiplex networks
    Quantong Guo
    Emanuele Cozzo
    Zhiming Zheng
    Yamir Moreno
    [J]. Scientific Reports, 6
  • [27] Annihilating random walks in one-dimensional disordered media
    Schutz, G.M.
    Mussawisade, K.
    [J]. Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 57 (3-A):
  • [28] Resetting random walks in one-dimensional lattices with sinks
    Christophorov, L. N.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (15)
  • [29] Biased random walks on a disordered one-dimensional lattice
    Manikandan, K.
    Srivastava, Shashi C. L.
    Jain, Sudhir R.
    [J]. PHYSICS LETTERS A, 2011, 375 (03) : 368 - 371
  • [30] Extreme slowdowns for one-dimensional excited random walks
    Peterson, Jonathon
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (02) : 458 - 481