Universal Scaling Laws in Schottky Heterostructures Based on Two-Dimensional Materials

被引:134
|
作者
Ang, Yee Sin [1 ]
Yang, Hui Ying
Ang, L. K. [1 ]
机构
[1] SUTD, SUTD MIT Int Design Ctr, 8 Somapah Rd, Singapore 487372, Singapore
关键词
P-N-JUNCTIONS; GRAPHENE; MOS2; CONTACTS; DIODES; SEMICONDUCTORS; TRANSISTORS; EMISSION;
D O I
10.1103/PhysRevLett.121.056802
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We identify a new universality in the carrier transport of two-dimensional (2D) material-based Schottky heterostructures. We show that the reversed saturation current (J) scales universally with temperature (T) as log(J/T beta) proportional to -1/T, with beta = 3/2 for lateral Schottky heterostructures and beta = 1 for vertical Schottky heterostructures, over a wide range of 2D systems including nonrelativistic electron gas, Rashba spintronic systems, single-and few-layer graphene, transition metal dichalcogenides, and thin films of topological solids. Such universalities originate from the strong coupling between the thermionic process and the in-plane carrier dynamics. Our model resolves some of the conflicting results from prior works and is in agreement with recent experiments. The universal scaling laws signal the breakdown of beta = 2 scaling in the classic diode equation widely used over the past sixty years. Our findings shall provide a simple analytical scaling for the extraction of the Schottky barrier height in 2D material-based heterostructures, thus paving the way for both a fundamental understanding of nanoscale interface physics and applied device engineering.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Photodetectors Based on Two-Dimensional Materials and Their van der Waals Heterostructures
    Li Jiayi
    Ding Yi
    Zhang, David Wei
    Zhou Peng
    [J]. ACTA PHYSICO-CHIMICA SINICA, 2019, 35 (10) : 1058 - 1077
  • [22] Two-dimensional heterostructures based on ZnO
    Lotin, A. A.
    Novodvorsky, O. A.
    Parshina, L. S.
    Khaydukov, E. V.
    Zuev, D. A.
    Khramova, O. D.
    Panchenko, V. Y.
    [J]. APPLIED PHYSICS B-LASERS AND OPTICS, 2011, 105 (03): : 565 - 572
  • [23] Two-dimensional heterostructures based on ZnO
    A. A. Lotin
    O. A. Novodvorsky
    L. S. Parshina
    E. V. Khaydukov
    D. A. Zuev
    O. D. Khramova
    V. Y. Panchenko
    [J]. Applied Physics B, 2011, 105 : 565 - 572
  • [24] Two-dimensional layered materials and heterostructures for flexible electronics
    Hoang, Anh Tuan
    Hu, Luhing
    Katiyar, Ajit Kumar
    Ahn, Jong-Hyun
    [J]. MATTER, 2022, 5 (12) : 4116 - 4132
  • [25] Scaling laws and vortex profiles in two-dimensional decaying turbulence
    Laval, JP
    Chavanis, PH
    Dubrulle, B
    Sire, C
    [J]. PHYSICAL REVIEW E, 2001, 63 (06):
  • [26] Recent advances of two-dimensional materials-based heterostructures for rechargeable batteries
    Xue, Yinghui
    Xu, Tianjie
    Wang, Chenyang
    Fu, Lei
    [J]. ISCIENCE, 2024, 27 (08)
  • [27] Hybrid heterostructures and devices based on two-dimensional layers and wide bandgap materials
    Wu, Z.
    Jie, W.
    Yang, Z.
    Hao, J.
    [J]. MATERIALS TODAY NANO, 2020, 12
  • [28] Universal Scaling of Intrinsic Resistivity in Two-Dimensional Metallic Borophene
    Zhang, Jin
    Zhang, Jia
    Zhou, Liujiang
    Cheng, Cai
    Lian, Chao
    Liu, Jian
    Tretiak, Sergei
    Lischner, Johannes
    Giustino, Feliciano
    Meng, Sheng
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (17) : 4585 - 4589
  • [29] MOSFET Scaling: Impact of Two-dimensional Channel Materials
    Granzner, Ralf
    Geng, Zhansong
    Kinberger, Wilhelm
    Schwierz, Frank
    [J]. 2016 13TH IEEE INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED CIRCUIT TECHNOLOGY (ICSICT), 2016, : 466 - 469
  • [30] Universal description of channel plasmons in two-dimensional materials
    Goncalves, P. A. D.
    Bozhevolnyi, Sergey I.
    Mortensen, N. Asger
    Peres, N. M. R.
    [J]. OPTICA, 2017, 4 (06): : 595 - 600