Given a fixed Jacobi cusp form, we consider a family of linear maps between the spaces of Jacobi cusp forms using the Rankin-Cohen brackets, and then we compute the adjoint maps of these linear maps with respect to the Petersson scalar product. The Fourier coefficients of the Jacobi cusp forms constructed using this method involve special values of certain Dirichlet series associated to Jacobi cusp forms. This is a generalization of the work due to Kohnen (Math Z, 207:657-660, 1991) and Herrero (Ramanujan J, 10.1007/s11139-013-9536-5, 2014) in case of elliptic modular forms to the case of Jacobi cusp forms which is also considered earlier by Sakata (Proc Japan Acad Ser A, Math Sci 74, 1998) for a special case.
机构:
Univ Tokyo, Grad Sch Math Sci, 3-8-1 Komaba, Tokyo 1538914, Japan
French Japanese Lab Math & its Interact, FJ LMI CNRS IRL 2025, Tokyo, JapanUniv Tokyo, Grad Sch Math Sci, 3-8-1 Komaba, Tokyo 1538914, Japan
Kobayashi, Toshiyuki
Pevzner, Michael
论文数: 0引用数: 0
h-index: 0
机构:
French Japanese Lab Math & its Interact, FJ LMI CNRS IRL 2025, Tokyo, Japan
Univ Reims, LMR, CNRS, UMR 9008, F-51687 Reims, FranceUniv Tokyo, Grad Sch Math Sci, 3-8-1 Komaba, Tokyo 1538914, Japan
机构:
Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
Hunan Normal Univ, Sch Math & Stat, Changsha 410081, Peoples R ChinaHarbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
Zhang, Yichao
Zhou, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R ChinaHarbin Inst Technol, Sch Math, Harbin 150001, Peoples R China