Extremal Problems for Convex Curves with a Given Self Chebyshev Radius

被引:2
|
作者
Balestro, Vitor [1 ]
Martini, Horst [2 ]
Nikonorov, Yurii [3 ]
Nikonorova, Yulia [4 ]
机构
[1] Univ Fed Fluminense, Inst Matemat & Estat, BR-24210201 Niteroi, RJ, Brazil
[2] Tech Univ Chemnitz, Fak Math, D-09107 Chemnitz, Germany
[3] Russian Acad Sci, Vladikavkaz Sci Ctr, Southern Math Inst, Markus St 22, Vladikavkaz, Russia
[4] Natl Res Nucl Univ MEPhI, Volgodonsk Engn Tech Inst, Lenin St 73-94, Volgodonsk 347360, Russia
关键词
Approximation by polytopes; convex curve; convex polygon; relative Chebyshev radius; self Chebyshev radius;
D O I
10.1007/s00025-021-01394-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper is devoted to some extremal problems for convex curves and polygons in the Euclidean plane referring to the self Chebyshev radius. In particular, we determine the self Chebyshev radius for the boundary of an arbitrary triangle. Moreover, we derive the maximal possible perimeter for convex curves and boundaries of convex n-gons with a given self Chebyshev radius.
引用
收藏
页数:13
相关论文
共 50 条