Algorithms for elliptic curves

被引:0
|
作者
Benamara, Oualid [1 ]
机构
[1] Univ Sicence & Technol Houari Boumerdiene, Inst Math, BP 32 Bab Ezzouar, Algiers 16111, Algeria
关键词
Elliptic Curves Signature Schemes Zero Knowledge Proofs;
D O I
10.1080/09720529.2020.1714891
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce in this paper the algorithmic aspect of elliptic curves together with their applications. We also recall one of the promising application in the field of zero knowledge proofs with concrete implementations.
引用
收藏
页码:455 / 462
页数:8
相关论文
共 50 条
  • [21] Improving the Complexity of Index Calculus Algorithms in Elliptic Curves over Binary Fields
    Faugere, Jean-Charles
    Perret, Ludovic
    Petit, Christophe
    Renault, Guenael
    ADVANCES IN CRYPTOLOGY - EUROCRYPT 2012, 2012, 7237 : 27 - 44
  • [22] Software Application to Evaluate the Complexity Theory of the RSA and Elliptic Curves Asymmetric Algorithms
    Ayala, Wendy
    Fuertes, Walter
    Galarraga, Fernando
    Aules, Hernan
    Toulkeridis, Theofilos
    PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON SOFTWARE SECURITY AND ASSURANCE (ICSSA), 2017, : 87 - 93
  • [24] Fast algorithms for computing isogenies between ordinary elliptic curves in small characteristic
    De Feo, Luca
    JOURNAL OF NUMBER THEORY, 2011, 131 (05) : 873 - 893
  • [25] Implementation and Analysis of Elliptic Curves-Based Cryptographic Algorithms in the Integrated Programming Environment
    Lukaszewski, Robert
    Sobieszek, Michal
    Bilski, Piotr
    INTERNATIONAL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2011, 57 (03) : 257 - 262
  • [26] A comparison and a combination of SST and AGM algorithms for counting points of elliptic curves in characteristic 2
    Gaudry, P
    ADVANCES IN CRYPTOLOGY - ASIACRYPT 2002, PROCEEDINGS, 2002, 2501 : 311 - 327
  • [27] Improved Algorithms for Finding Fixed-Degree Isogenies Between Supersingular Elliptic Curves
    Bencina, Benjamin
    Kutas, Peter
    Merz, Simon-Philipp
    Petit, Christophe
    Stopar, Miha
    Weitkamper, Charlotte
    ADVANCES IN CRYPTOLOGY - CRYPTO 2024, PT V, 2024, 14924 : 183 - 217
  • [28] On p-adic point counting algorithms for elliptic curves over finite fields
    Satoh, T
    ALGORITHMIC NUMBER THEORY, 2002, 2369 : 43 - 66
  • [29] On the Algebra of elliptic curves
    Brzezinski, Tomasz
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2023, 66 (02) : 548 - 556
  • [30] Ranks of elliptic curves
    Rubin, K
    Silverberg, A
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 39 (04): : 455 - 474