Markov Chain Monte Carlo in Practice

被引:22
|
作者
Jones, Galin L. [1 ]
Qin, Qian [1 ]
机构
[1] Univ Minnesota, Sch Stat, Minneapolis, MN 55113 USA
基金
美国国家科学基金会;
关键词
autocorrelation; central limit theorem; convergence diagnostics; effective sample size; Markov chain Monte Carlo; stopping rule; INTRACTABLE PROBABILITY-DISTRIBUTIONS; SPECTRAL VARIANCE ESTIMATORS; GEOMETRIC ERGODICITY; GIBBS SAMPLER; STRONG CONSISTENCY; CONVERGENCE-RATES; COVARIANCE STRUCTURE; OUTPUT ANALYSIS; BATCH MEANS; HASTINGS;
D O I
10.1146/annurev-statistics-040220-090158
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Markov chain Monte Carlo (MCMC) is an essential set of tools for estimating features of probability distributions commonly encountered in modern applications. For MCMC simulation to produce reliable outcomes, it needs to generate observations representative of the target distribution, and it must be long enough so that the errors of Monte Carlo estimates are small. We review methods for assessing the reliability of the simulation effort, with an emphasis on those most useful in practically relevant settings. Both strengths and weaknesses of these methods are discussed. The methods are illustrated in several examples and in a detailed case study.
引用
收藏
页码:557 / 578
页数:22
相关论文
共 50 条
  • [1] Markov Chain Monte Carlo Algorithms: Theory and Practice
    Rosenthal, Jeffrey S.
    [J]. MONTE CARLO AND QUASI-MONTE CARLO METHODS 2008, 2009, : 157 - 169
  • [2] Markov chain Monte Carlo in practice: A roundtable discussion
    Kass, RE
    Carlin, BP
    Gelman, A
    Neal, RM
    [J]. AMERICAN STATISTICIAN, 1998, 52 (02): : 93 - 100
  • [4] Markov Chain Monte Carlo
    Henry, Ronnie
    [J]. EMERGING INFECTIOUS DISEASES, 2019, 25 (12) : 2298 - 2298
  • [5] Population Markov Chain Monte Carlo
    Laskey, KB
    Myers, JW
    [J]. MACHINE LEARNING, 2003, 50 (1-2) : 175 - 196
  • [6] Monte Carlo integration with Markov chain
    Tan, Zhiqiang
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (07) : 1967 - 1980
  • [7] Population Markov Chain Monte Carlo
    Kathryn Blackmond Laskey
    James W. Myers
    [J]. Machine Learning, 2003, 50 : 175 - 196
  • [8] Evolutionary Markov chain Monte Carlo
    Drugan, MM
    Thierens, D
    [J]. ARTIFICIAL EVOLUTION, 2004, 2936 : 63 - 76
  • [9] THE MARKOV CHAIN MONTE CARLO REVOLUTION
    Diaconis, Persi
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 46 (02) : 179 - 205
  • [10] Multilevel Markov Chain Monte Carlo
    Dentcheva, Darinka
    [J]. SIAM REVIEW, 2019, 61 (03) : 547 - 548