Evolutionary Markov chain Monte Carlo

被引:0
|
作者
Drugan, MM [1 ]
Thierens, D [1 ]
机构
[1] Univ Utrecht, Inst Comp & Informat Sci, NL-3508 TB Utrecht, Netherlands
来源
ARTIFICIAL EVOLUTION | 2004年 / 2936卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Markov chain Monte Carlo (MCMC) is a popular class of algorithms to sample from a complex distribution. A key issue in the design of MCMC algorithms is to improve the proposal mechanism and the mixing behaviour. This has led some authors to propose the use of a population of MCMC chains, while others go even further by integrating techniques from evolutionary computation (EC) into the MCMC framework. This merging of MCMC and EC leads to a class of algorithms, we call Evolutionary Markov Chain Monte Carlo (EMCMC). In this paper we first survey existing EMCMC algorithms and categorise them in two classes: family-competitive EMCMC and population-driven EMCMC. Next, we introduce, the Elitist Coupled Acceptance rule and the Fitness Ordered Tempering algorithm.
引用
收藏
页码:63 / 76
页数:14
相关论文
共 50 条
  • [1] System identification using evolutionary Markov chain Monte Carlo
    Zhang, BT
    Cho, DY
    [J]. JOURNAL OF SYSTEMS ARCHITECTURE, 2001, 47 (07) : 587 - 599
  • [2] Markov Chain Monte Carlo
    Henry, Ronnie
    [J]. EMERGING INFECTIOUS DISEASES, 2019, 25 (12) : 2298 - 2298
  • [3] Evolutionary Markov chain Monte Carlo algorithms for optimal monitoring network designs
    Ruiz-Cardenas, Ramiro
    Ferreira, Marco A. R.
    Schmidt, Alexandra M.
    [J]. STATISTICAL METHODOLOGY, 2012, 9 (1-2) : 185 - 194
  • [4] Recombination operators and selection strategies for evolutionary Markov Chain Monte Carlo algorithms
    Drugan, Madalina M.
    Thierens, Dirk
    [J]. EVOLUTIONARY INTELLIGENCE, 2010, 3 (02) : 79 - 101
  • [5] Population Markov Chain Monte Carlo
    Laskey, KB
    Myers, JW
    [J]. MACHINE LEARNING, 2003, 50 (1-2) : 175 - 196
  • [6] Monte Carlo integration with Markov chain
    Tan, Zhiqiang
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (07) : 1967 - 1980
  • [7] Population Markov Chain Monte Carlo
    Kathryn Blackmond Laskey
    James W. Myers
    [J]. Machine Learning, 2003, 50 : 175 - 196
  • [8] On nonlinear Markov chain Monte Carlo
    Andrieu, Christophe
    Jasra, Ajay
    Doucet, Arnaud
    Del Moral, Pierre
    [J]. BERNOULLI, 2011, 17 (03) : 987 - 1014
  • [9] Structured Markov Chain Monte Carlo
    Sargent, DJ
    Hodges, JS
    Carlin, BP
    [J]. DIMENSION REDUCTION, COMPUTATIONAL COMPLEXITY AND INFORMATION, 1998, 30 : 191 - 191
  • [10] Multilevel Markov Chain Monte Carlo
    Dentcheva, Darinka
    [J]. SIAM REVIEW, 2019, 61 (03) : 547 - 548