VECTOR l0 SPARSE CONDITIONAL INDEPENDENCE GRAPHS

被引:0
|
作者
Marjanovic, Goran [1 ]
Solo, Victor [1 ]
机构
[1] Univ New South Wales, Sch Elect Engn & Telecommun, Sydney, NSW, Australia
基金
澳大利亚研究理事会;
关键词
sparsity; l(O); precision matrix; SELECTION; LASSO; MODEL;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
One of the main approaches to system identification of networks of time series or signals is conditional independence graphical (CIG) modeling. In the Gaussian case, the conditional dependence structure of the nodal time series is determined by the location of zeros in the precision matrix (inverse covariance matrix). And this determines the graph structure of the network. Despite the many applications of CIG models, the theory and algorithms have so far only dealt with networks of univariate or scalar signals. But in most applications the nodes carry multivariate or vector signals. Here we extend CIG modeling to handle such data by posing a group l(0) sparse penalised block precision matrix estimation problem. We develop a double cyclic descent algorithm to solve it. And we compare the method with a group l(1) penalised alternative in simulations.
引用
收藏
页码:2731 / 2735
页数:5
相关论文
共 50 条
  • [41] EAR BIOMETRICS AND SPARSE REPRESENTATION BASED ON SMOOTHED l0 NORM
    Khorsandi, Rahman
    Abdel-Mottaleb, Mohamed
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2014, 28 (08)
  • [42] A L0 sparse analysis prior for blind poissonian image deconvolution
    Gong, Xiaojin
    Lai, Baisheng
    Xiang, Zhiyu
    OPTICS EXPRESS, 2014, 22 (04): : 3860 - 3865
  • [43] A New Smoothed L0 Regularization Approach for Sparse Signal Recovery
    Xiang, Jianhong
    Yue, Huihui
    Yin, Xiangjun
    Wang, Linyu
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019
  • [44] l0 Penalized Maximum Likelihood Estimation of Sparse Covariance Matrices
    Fatima, Ghania
    Stoica, Petre
    Babu, Prabhu
    IEEE SIGNAL PROCESSING LETTERS, 2025, 32 : 66 - 70
  • [45] l0 Norm Constraint LMS Algorithm for Sparse System Identification
    Gu, Yuantao
    Jin, Jian
    Mei, Shunliang
    IEEE SIGNAL PROCESSING LETTERS, 2009, 16 (09) : 774 - 777
  • [46] AN ITERATIVE HARD THRESHOLDING APPROACH TO l0 SPARSE HELLINGER NMF
    O'Hanlon, Ken
    Sandler, Mark B.
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 4737 - 4741
  • [47] Robust and effective mesh denoising using L0 sparse regularization
    Zhao, Yong
    Qin, Hong
    Zeng, Xueying
    Xu, Junli
    Dong, Junyu
    COMPUTER-AIDED DESIGN, 2018, 101 : 82 - 97
  • [48] LARGE-SCALE l0 SPARSE INVERSE COVARIANCE ESTIMATION
    Marjanovic, Goran
    Ulfarsson, Magnus
    Solo, Victor
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 4767 - 4771
  • [49] SPARSE HYPERSPECTRAL UNMIXING VIA ARCTAN APPROXIMATION OF L0 NORM
    Salehani, Yaser Esmaeili
    Gazor, Saeed
    Kim, Il-Min
    Yousefi, Shahram
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [50] The geometry of L0
    Kalton, N. J.
    Koldobsky, A.
    Yaskin, V.
    Yaskina, M.
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2007, 59 (05): : 1029 - 1049