FEM analysis of the temperature and stress distribution in spark plasma sintering: Modelling and experimental validation

被引:102
|
作者
Wang, Cao [1 ,2 ]
Cheng, Laifei [2 ]
Zhao, Zhe [1 ]
机构
[1] Stockholm Univ, Dept Mat & Environm Chem, SE-10691 Stockholm, Sweden
[2] NW Polytech Univ, Natl Key Lab Thermostruct Composite Mat, Xian 710072, Shaanxi, Peoples R China
关键词
Finite element modelling; Spark plasma sintering; Temperature and stress distribution; Grain size; THERMAL-GRADIENT; GRAIN-GROWTH; SIMULATION; EVOLUTION; NITRIDE;
D O I
10.1016/j.commatsci.2010.05.021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A fully thermal-electrical-mechanical coupled and dynamic finite element model (FEM) is implemented to analyze of the temperature and stress distribution in spark plasma sintering (SPS) process. The real densification behaviour is also integrated by the moving mesh technique. The simulation studies were conducted using COMSOL and a range of die sizes, heating rates and uniaxial stresses were considered. The further validation experiments are implemented to validate the simulation results. The detailed microstructure investigations generally demonstrate that the temperature and stress profile obtained in present model are correct. But further development of complicated models is still needed for more precise prediction of sintering condition and microstructure development in SPS. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:351 / 362
页数:12
相关论文
共 50 条
  • [31] An Experimental Apparatus for Modeling the Processes of Electric Spark Plasma Sintering
    V. A. Kudryashov
    S. M. Godin
    S. G. Vadchenko
    A. S. Rogachev
    Instruments and Experimental Techniques, 2020, 63 : 77 - 80
  • [32] An Experimental Apparatus for Modeling the Processes of Electric Spark Plasma Sintering
    Kudryashov, V. A.
    Godin, S. M.
    Vadchenko, S. G.
    Rogachev, A. S.
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 2020, 63 (01) : 77 - 80
  • [33] NUMERICAL MODELLING OF THERMAL-ELECTRICAL PHENOMENA IN SPARK PLASMA SINTERING
    Mondalek, P.
    Silva, L.
    Durand, L.
    Bellet, M.
    NUMIFORM 2010, VOLS 1 AND 2: DEDICATED TO PROFESSOR O. C. ZIENKIEWICZ (1921-2009), 2010, 1252 : 697 - +
  • [34] Influence of temperature on the spark plasma sintering of calcium fluoride ceramics
    Shi Chen
    Yiquan Wu
    Journal of Materials Research, 2014, 29 : 2297 - 2302
  • [35] Temperature Fields Control in the Process of Spark Plasma Sintering of Thermoelectrics
    Bulat, L. P.
    Novotel'nova, A. V.
    Tukmakova, A. S.
    Yerezhep, D. E.
    Osvenskii, V. B.
    Sorokin, A. I.
    Pshenai-Severin, D. A.
    Ashmontas, S.
    TECHNICAL PHYSICS, 2017, 62 (04) : 604 - 612
  • [36] Transparent nanocrystalline MgO by low temperature spark plasma sintering
    Chaim, R
    Shen, ZJ
    Nygren, M
    CERAMIC NANOMATERIALS AND NANOTECHNOLOGY III, 2005, 159 : 21 - 30
  • [37] Ultralow Temperature Densification of a Titanium Alloy by Spark Plasma Sintering
    Bustillos, Jenniffer
    Zhang, Cheng
    Loganathan, Archana
    Boesl, Benjamin
    Agarwal, Arvind
    ADVANCED ENGINEERING MATERIALS, 2020, 22 (06)
  • [38] Ultra-high temperature spark plasma sintering of α-SiC
    Grasso, Salvatore
    Saunders, Theo
    Porwal, Harshit
    Reece, Mike
    CERAMICS INTERNATIONAL, 2015, 41 (01) : 225 - 230
  • [39] Densification of nanocrystalline yttria by low temperature spark plasma sintering
    Yoshida, Hidehiro
    Morita, Koji
    Kim, Byung-Nam
    Hiraga, Keijiro
    Kodo, Masayasu
    Soga, Kohei
    Yamamoto, Takahisa
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2008, 91 (05) : 1707 - 1710
  • [40] Influence of temperature on the spark plasma sintering of calcium fluoride ceramics
    Chen, Shi
    Wu, Yiquan
    JOURNAL OF MATERIALS RESEARCH, 2014, 29 (19) : 2297 - 2302