Sequential Bayesian kernel regression

被引:0
|
作者
Vermaak, J [1 ]
Godsill, SJ [1 ]
Doucet, A [1 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a method for sequential Bayesian kernel regression. As is the case for the popular Relevance Vector Machine (RVM) [10, 11], the method automatically identifies the number and locations of the kernels. Our algorithm overcomes some of the computational difficulties related to batch methods for kernel regression. It is non-iterative, and requires only a single pass over the data. It is thus applicable to truly sequential data sets and batch data sets alike. The algorithm is based on a generalisation of Importance Sampling, which allows the design of intuitively simple and efficient proposal distributions for the model parameters. Comparative results on two standard data sets show our algorithm to compare favourably with existing batch estimation strategies.
引用
收藏
页码:113 / 120
页数:8
相关论文
共 50 条
  • [31] Estimation of condition-dependent dispersal kernel with simple Bayesian regression analysis
    Sawada, Akira
    Iwasaki, Tetsuya
    Inoue, Chitose
    Nakaoka, Kana
    Nakanishi, Takumi
    Sawada, Junpei
    Aso, Narumi
    Nagai, Syuya
    Ono, Haruka
    Murakami, Ryota
    Takagi, Masaoki
    [J]. ORNITHOLOGICAL SCIENCE, 2023, 22 (01) : 25 - 34
  • [32] Bayesian optimal sequential design for nonparametric regression via inhomogeneous evolutionary MCMC
    Ferreira, Marco A. R.
    Sanyal, Nilotpal
    [J]. STATISTICAL METHODOLOGY, 2014, 18 : 131 - 141
  • [33] Combined effects of multiple metals on hearing loss: A Bayesian kernel machine regression approach
    Liang, Mingming
    Guo, Xianwei
    Ding, Xiuxiu
    Song, Qiuxia
    Wang, Hao
    Li, Ning
    Su, Wanying
    Liang, Qiwei
    Sun, Yehuan
    [J]. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2022, 247
  • [34] DR-ABC: Approximate Bayesian Computation with Kernel-Based Distribution Regression
    Mitrovic, Jovana
    Sejdinovic, Dino
    Teh, Yee Whye
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [35] Random multi-scale kernel-based Bayesian distribution regression learning
    Dong, Xue-Mei
    Gu, Yin-He
    Shi, Jian
    Xiang, Kun
    [J]. KNOWLEDGE-BASED SYSTEMS, 2020, 201
  • [36] Surface roughness prediction using kernel locality preserving projection and Bayesian linear regression
    Kong, Dongdong
    Zhu, Junjiang
    Duan, Chaoqun
    Lu, Lixin
    Chen, Dongxing
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 152
  • [37] Selection of the Bandwidth Parameter in a Bayesian Kernel Regression Model for Genomic-Enabled Prediction
    Sergio Pérez-Elizalde
    Jaime Cuevas
    Paulino Pérez-Rodríguez
    José Crossa
    [J]. Journal of Agricultural, Biological, and Environmental Statistics, 2015, 20 : 512 - 532
  • [38] Bayesian nonparametric general regression with adaptive kernel bandwidth and its application to seismic attenuation
    Yuen, Ka-Veng
    Zhang, Wen-Jing
    Yan, Wang-Ji
    [J]. ADVANCED ENGINEERING INFORMATICS, 2023, 55
  • [39] Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures
    Bobb, Jennifer F.
    Valeri, Linda
    Claus Henn, Birgit
    Christiani, David C.
    Wright, Robert O.
    Mazumdar, Maitreyi
    Godleski, John J.
    Coull, Brent A.
    [J]. BIOSTATISTICS, 2015, 16 (03) : 493 - 508
  • [40] Selection of the Bandwidth Parameter in a Bayesian Kernel Regression Model for Genomic-Enabled Prediction
    Perez-Elizalde, Sergio
    Cuevas, Jaime
    Perez-Rodriguez, Paulino
    Crossa, Jose
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2015, 20 (04) : 512 - 532