Orbits of maximal invariant subgroups and solvability of finite groups

被引:0
|
作者
Shao, Changguo [1 ]
Beltran, Antonio [2 ]
机构
[1] Univ Jinan, Sch Math Sci, Jinan 250022, Shandong, Peoples R China
[2] Univ Jaume 1, Dept Matemat, Castellon de La Plana 12071, Spain
关键词
Maximal invariant subgroups; Coprime action; Maximal subgroups of simple groups of Lie type;
D O I
10.1016/j.jalgebra.2019.08.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A and G be finite groups having coprime orders and suppose that A acts on G via automorphisms. We give some solvability criteria for G according to the number of orbits that appear by the action of the fixed point subgroup C-G(A) on the set of maximal A-invariant subgroups of G, and likewise, on the set of non-nilpotent maximal A-invariant subgroups. We also obtain some characterizations and further structure properties of these groups. In the course of our study we prove an independent result concerning maximal factorizations of classical simple groups. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:177 / 200
页数:24
相关论文
共 50 条
  • [31] The Maximal Subgroups of Sylow Subgroups and the Structure of Finite Groups
    Li, Changwen
    Zhang, Xuemei
    Huang, Jianhong
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2019, 37 (01): : 113 - 124
  • [32] On δ-permutability of maximal subgroups of Sylow subgroups of finite groups
    Qingjun Kong
    Xiuyun Guo
    Archiv der Mathematik, 2008, 91 : 106 - 110
  • [33] ON THE COADJOINT ORBITS OF MAXIMAL UNIPOTENT SUBGROUPS OF REDUCTIVE GROUPS
    SIMON M. GOODWIN
    PETER MOSCH
    GERHARD RÖHRLE
    Transformation Groups, 2016, 21 : 399 - 426
  • [34] ON THE COADJOINT ORBITS OF MAXIMAL UNIPOTENT SUBGROUPS OF REDUCTIVE GROUPS
    Goodwin, Simon M.
    Mosch, Peter
    Roehrle, Gerhard
    TRANSFORMATION GROUPS, 2016, 21 (02) : 399 - 426
  • [35] On δ-permutability of maximal subgroups of Sylow subgroups of finite groups
    Kong, Qingjun
    Guo, Xiuyun
    ARCHIV DER MATHEMATIK, 2008, 91 (02) : 106 - 110
  • [36] Orbits of Sylow subgroups of finite permutation groups
    Bamberg, John
    Bors, Alexander
    Devillers, Alice
    Giudici, Michael
    Praeger, Cheryl E.
    Royle, Gordon F.
    JOURNAL OF ALGEBRA, 2022, 607 : 107 - 133
  • [37] GENERATING FINITE-GROUPS WITH MAXIMAL-SUBGROUPS OF MAXIMAL-SUBGROUPS
    FLAVELL, P
    JOURNAL OF ALGEBRA, 1995, 177 (02) : 372 - 384
  • [38] On weakly-supplemented subgroups and the solvability of finite groups
    Zhou, Qiang
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2019, 69 (02) : 331 - 335
  • [40] C-normal subgroups and solvability of finite groups
    Liu, Guo-Gang
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2004, 32 (11): : 93 - 96