A Titanium-Organic Framework as an Exemplar of Combining the Chemistry of Metal- and Covalent-Organic Frameworks

被引:277
|
作者
Nguyen, Ha L. [1 ,2 ,3 ]
Gandara, Felipe [4 ]
Furukawa, Hiroyasu [1 ,2 ,5 ]
Doan, Tan L. H. [6 ]
Cordova, Kyle E. [1 ,2 ,5 ]
Yaghi, Omar M. [1 ,2 ,5 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Dept Chem,Kavli Energy NanoSci Inst Berkeley, Berkeley, CA 94720 USA
[2] Berkeley Global Sci Inst, Berkeley, CA 94720 USA
[3] Vietnam Natl Univ Ho Chi Minh City VNU HCM, Ho Chi Minh City 721337, Vietnam
[4] CSIC, Mat Sci Inst Madrid, Dept New Architectures Mat Chem, Plaza Murillo 2, E-28049 Madrid, Spain
[5] King Fand Univ Petr & Minerals, Dhahran 34464, Saudi Arabia
[6] Univ Sci, Fac Chem, VNU HCM, Ho Chi Minh City 721337, Vietnam
关键词
POROUS COORDINATION POLYMERS; RADICAL POLYMERIZATION; VISIBLE-LIGHT; SORPTION PROPERTIES; OPTICAL-ABSORPTION; CLUSTERS; DESIGN; FUNCTIONALIZATION; PHOTOINITIATOR; TOPOLOGY;
D O I
10.1021/jacs.6b01233
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A crystalline material with a two-dimensional structure, termed metal organic framework-901 (MOF-901), was prepared using a strategy that combines the chemistry of MOFs and covalent organic frameworks (COFs). This strategy involves in situ generation of an amine-functionalized titanium oxo cluster, Ti6O6(OCH3)(6)(AB)(6) (AB = 4-aminobenzoate), which was linked with benzene-1,4-dialdehyde using imine condensation reactions, typical of COFs. The crystal structure of MOF-901 is composed of hexagonal porous layers that are likely stacked in staggered conformation (I-Lid topology). This MOF represents the first example of combining metal cluster chemistry with dynamic organic covalent bond formation to give a new crystalline, extended framework of titanium metal, which is rarely used in MOFs. The incorporation of Ti(IV) units made MOF-901 useful in the photocatalyzed polymerization of methyl methacrylate (MMA). The resulting polyMMA product was obtained with a high-number-average molar mass (26 850 g mol(-1) and low polydispersity index (1.6), which in many respects are better than those achieved by the commercially available photocatalyst (P-25 TiO2). Additionally, the catalyst can be isolated, reused, and recycled with no loss in performance.
引用
收藏
页码:4330 / 4333
页数:4
相关论文
共 50 条
  • [21] Ordered Integration and Heterogenization of Catalysts and Photosensitizers in Metal-/Covalent-Organic Frameworks for Boosting CO2 Photoreduction
    Yin, Hua-Qing
    Zhang, Zhi-Ming
    Lu, Tong-Bu
    ACCOUNTS OF CHEMICAL RESEARCH, 2023, 56 (19) : 2676 - 2687
  • [22] Confinement-Driven Photophysics in Cages, Covalent-Organic Frameworks, Metal-Organic Frameworks, and DNA
    Dolgopolova, Ekaterina A.
    Berseneva, Anna A.
    Faillace, Martin S.
    Ejegbavwo, Otega A.
    Leith, Gabrielle A.
    Choi, Seok W.
    Gregory, Haley N.
    Rice, Allison M.
    Smith, Mark D.
    Chruszcz, Maksymilian
    Garashchuk, Sophya
    Mythreye, Karthikeyan
    Shustova, Natalia B.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (10) : 4769 - 4783
  • [23] Calculation of hydrogen storage capacity of metal-organic and covalent-organic frameworks by spillover
    Suri, Mayur
    Dornfeld, Matthew
    Ganz, Eric
    JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (17):
  • [24] Metal- and covalent-organic framework-based drug delivery systems: Applications to control cell functions
    Kang, Min-Ji
    Cho, Yeon-Woo
    Kim, Tae-Hyung
    COORDINATION CHEMISTRY REVIEWS, 2025, 527
  • [25] Metal Node Control of Bronsted Acidity in Heterobimetallic Titanium-Organic Frameworks
    Rubio-Gaspar, Ana
    Navalon, Sergio
    Tatay, Sergio
    Cirujano, Francisco G.
    Fernandez-Conde, Carmen
    Padial, Natalia M.
    Marti-Gastaldo, Carlos
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (07) : 3855 - 3860
  • [26] Chemical Engineering of Photoactivity in Heterometallic Titanium-Organic Frameworks by Metal Doping
    Castells-Gil, Javier
    Padial, Natalia M.
    Almora-Barrios, Neyvis
    Albero, Josep
    Ruiz-Salvador, A. Rabdel
    Gonzalez-Platas, Javier
    Garcia, Hermenegildo
    Marti-Gastaldo, Carlos
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (28) : 8453 - 8457
  • [27] Metal/covalent-organic frameworks-based electrocatalysts for water splitting
    Yan, Ya
    He, Ting
    Zhao, Bin
    Qi, Kai
    Liu, Hongfang
    Xia, Bao Yu
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (33) : 15905 - 15926
  • [28] Pressure effects on metal/covalent-organic frameworks: structural and optical properties
    Wang, Yixuan
    Yang, Yunfeng
    Yang, Xinyi
    Zou, Bo
    SCIENCE CHINA-CHEMISTRY, 2024, 67 (09) : 2890 - 2903
  • [29] Metal- and covalent organic frameworks as catalyst for organic transformation: Comparative overview and future perspectives
    Abednatanzi, Sara
    Najafi, Mahnaz
    Derakhshandeh, Parviz Gohari
    Van der Voort, Pascal
    COORDINATION CHEMISTRY REVIEWS, 2022, 451
  • [30] Interfacial chemistries in metal-organic framework (MOF)/covalent-organic framework (COF) hybrids
    Ye, Lin
    Cen, Wanglai
    Chu, Yinghao
    Sun, Dengrong
    NANOSCALE, 2023, 15 (32) : 13187 - 13201