Image Based Lung Cancer Phenotyping with Deep-Learning Radiomics

被引:0
|
作者
Chaunzwa, T. [1 ]
Xu, Y. [2 ]
Mak, R. [3 ]
Christiani, D. [4 ]
Lanuti, M. [5 ]
Shafer, A.
Dia, N. [4 ]
Aerts, H. [6 ]
机构
[1] Howard Hughes Med Inst, Chevy Chase, MD USA
[2] Harvard Med Sch, Brigham & Womens Hosp, Boston, MA USA
[3] Brigham & Womens Hosp, 75 Francis St, Boston, MA 02115 USA
[4] Harvard TH Chan Sch Publ Hlth, Boston, MA USA
[5] Massachusetts Gen Hosp, Boston, MA 02114 USA
[6] Dana Farber Brigham Womens Canc Ctr, Boston, MA USA
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
SU-H300-Ge
引用
收藏
页码:E165 / E165
页数:1
相关论文
共 50 条
  • [21] A deep-learning radiomics model for predicting survival in early-stage non-small cell lung cancer.
    Chaunzwa, Tafadzwa Lawrence
    Christiani, David C.
    Lanuti, Michael
    Shafer, Andrea
    Diao, Nancy
    Mak, Raymond H.
    Aerts, Hugo
    JOURNAL OF CLINICAL ONCOLOGY, 2018, 36 (15)
  • [22] A deep-learning based diagnostic framework for Breast Cancer
    Sykiotis, Stavros
    Tzortzis, Ioannis N.
    Angeli, Aikaterini
    Doulamis, Nikolaos
    Kalogeras, Dimitrios
    PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS, PETRA 2022, 2022, : 641 - 645
  • [23] Lung cancer histology classification from CT images based on radiomics and deep learning models
    Marentakis, Panagiotis
    Karaiskos, Pantelis
    Kouloulias, Vassilis
    Kelekis, Nikolaos
    Argentos, Stylianos
    Oikonomopoulos, Nikolaos
    Loukas, Constantinos
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2021, 59 (01) : 215 - 226
  • [24] Lung cancer histology classification from CT images based on radiomics and deep learning models
    Panagiotis Marentakis
    Pantelis Karaiskos
    Vassilis Kouloulias
    Nikolaos Kelekis
    Stylianos Argentos
    Nikolaos Oikonomopoulos
    Constantinos Loukas
    Medical & Biological Engineering & Computing, 2021, 59 : 215 - 226
  • [25] A radiomics-boosted deep-learning for risk assessment of synchronous peritoneal metastasis in colorectal cancer
    Zhang, Ding
    Zheng, Bingshu
    Xu, Liuwei
    Wu, Yicong
    Shen, Chen
    Bao, Shanlei
    Tan, Zhonghua
    Sun, Chunfeng
    INSIGHTS INTO IMAGING, 2024, 15 (01):
  • [26] Lung cancer diagnosis using deep attention-based multiple instance learning and radiomics
    Chen, Junhua
    Zeng, Haiyan
    Zhang, Chong
    Shi, Zhenwei
    Dekker, Andre
    Wee, Leonard
    Bermejo, Inigo
    MEDICAL PHYSICS, 2022, 49 (05) : 3134 - 3143
  • [27] A nomogram based on radiomics signature and deep-learning signature for preoperative prediction of axillary lymph node metastasis in breast cancer
    Wang, Dawei
    Hu, Yiqi
    Zhan, Chenao
    Zhang, Qi
    Wu, Yiping
    Ai, Tao
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [28] RADIOMICS-BASED DEEP-LEARNING IMPROVES CT-STAGING OF LYMPH NODE STATUS FOR BLADDER CANCER PATIENTS
    Gresser, Eva
    Woznicki, Piotr
    Messmer, Katharina
    Kunz, Wolfgang
    Buchner, Alexander
    Stief, Christian
    Ricke, Jens
    Noerenberg, Dominik
    Schulz, Gerald
    JOURNAL OF UROLOGY, 2022, 207 (05): : E975 - E975
  • [29] Deep Learning Based Greenhouse Image Segmentation and Shoot Phenotyping (DeepShoot)
    Narisetti, Narendra
    Henke, Michael
    Neumann, Kerstin
    Stolzenburg, Frieder
    Altmann, Thomas
    Gladilin, Evgeny
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [30] Image-based phenotyping of disaggregated cells using deep learning
    Samuel Berryman
    Kerryn Matthews
    Jeong Hyun Lee
    Simon P. Duffy
    Hongshen Ma
    Communications Biology, 3