Dynamic Analysis of Mooring Cables with Application to Floating Offshore Wind Turbines

被引:7
|
作者
Petrone, Crescenzo [1 ]
Oliveto, Nicholas D. [2 ]
Sivaselvan, Mettupalayam V. [2 ]
机构
[1] Univ Naples Federico II, Dept Struct Engn & Architecture, Via Claudio 21, I-80125 Naples, Italy
[2] SUNY Buffalo, Dept Civil Struct & Environm Engn, 212 Ketter Hall, Buffalo, NY 14260 USA
关键词
Cables; Nonlinear dynamics; Large deformations; Energy dissipation; Fluid-structure interaction; Floating offshore wind turbine; SIMULATION;
D O I
10.1061/(ASCE)EM.1943-7889.0000999
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Floating offshore wind turbines are recently being considered widely for adoption in the wind power industry, attracting interest of several researchers and calling for the development of appropriate computational models and techniques. In the present work, a nonlinear finite-element formulation is proposed and applied to the static and dynamic analysis of mooring cables. Numerical examples are presented, and in particular, a mooring cable typically used for floating offshore wind turbines is analyzed. Hydrodynamic effects on the cable are accounted for using the Morison approach. A key enabling development here is an algorithmic tangent stiffness operator including hydrodynamic coupling. Numerical results also suggest that previous empirical hydrodynamic coefficients could be obtained by fully coupled fluid-structure interaction. Convergence-rate and energy-balance calculations have been used to demonstrate the accuracy of computed solutions. The introduction of the developed cable model in a framework for the study of the global behavior of floating offshore wind turbines is the subject of the current work. Source code developed for this work is available as online supplemental material with the paper. (C) 2015 American Society of Civil Engineers.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] DOUBLE BRAID MOORING DAMPER FOR FLOATING OFFSHORE WIND APPLICATION
    Khalid, Faryal
    Thies, Philipp R.
    Halswell, Peter
    Johanning, Lars
    Newsam, David
    PROCEEDINGS OF ASME 2022 41ST INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2022, VOL 8, 2022,
  • [22] Incidence of wind spectrum and turbulence intensity on the design of mooring systems for floating offshore wind turbines
    Piscopo, V.
    Scamardella, A.
    OCEAN ENGINEERING, 2023, 290
  • [23] Floating offshore wind turbines
    Sclavounos, Paul
    MARINE TECHNOLOGY SOCIETY JOURNAL, 2008, 42 (02) : 39 - 43
  • [24] Fatigue analysis of mooring systems in large wave height for floating offshore wind turbines and dlc considerations
    Saito, Masakatsu
    Proceedings of the International Offshore and Polar Engineering Conference, 2021, : 608 - 614
  • [25] STUDY ON FATIGUE ASSESSMENT CONSIDERING MOORING CHAIN WEAR FOR FLOATING OFFSHORE WIND TURBINES
    Takeuchi, Takaaki
    Kurokawa, Kazuki
    Nozoe, Eisuke
    PROCEEDINGS OF ASME 2024 43RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2024, VOL 2, 2024,
  • [26] Dynamic analysis of offshore wind turbines
    Zhang, Jian-Ping
    Wang, Ming-Qiang
    Gong, Zhen
    Shi, Feng-Feng
    WIND AND STRUCTURES, 2020, 31 (04) : 373 - 380
  • [27] Comparison study on mooring line models for hydrodynamic performances of floating offshore wind turbines
    Zhong, Wenjie
    Zhao, Weiwen
    Wan, Decheng
    Zhao, Yan
    OCEAN ENGINEERING, 2024, 296
  • [28] Ultimate and accidental limit state design for mooring systems of floating offshore wind turbines
    Benassai, G.
    Campanile, A.
    Piscopo, V.
    Scamardella, A.
    OCEAN ENGINEERING, 2014, 92 : 64 - 74
  • [29] Diagnosis of the health status of mooring systems for floating offshore wind turbines using autoencoders
    Gorostidi, N.
    Pardo, D.
    Nava, V.
    OCEAN ENGINEERING, 2023, 287
  • [30] Mooring design and selection for floating offshore wind turbines on intermediate and deep water depths
    Campanile, A.
    Piscopo, V.
    Scamardella, A.
    OCEAN ENGINEERING, 2018, 148 : 349 - 360