Object perception: Generative image models and Bayesian inference

被引:0
|
作者
Kersten, D [1 ]
机构
[1] Univ Minnesota, Dept Psychol, Minneapolis, MN 55455 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Humans perceive object properties such as shape and material quickly and reliably despite the complexity and objective ambiguities of natural images. The visual system does this by integrating prior object knowledge with critical image features appropriate for each of a discrete number of tasks. Bayesian decision theory provides a prescription for the optimal utilization of knowledge for a task that can guide the possibly sub-optimal models of human vision. However, formulating optimal theories for realistic vision problems is a non-trivial problem, and we can gain insight into visual inference by first characterizing the causal structure of image features-the generative model. I describe some experimental results that apply generative models and Bayesian decision theory to investigate human object perception.
引用
收藏
页码:207 / 218
页数:12
相关论文
共 50 条
  • [21] Bayesian inference for bioenergetic models
    Johnson, Leah R.
    Pecquerie, Laure
    Nisbet, Roger M.
    [J]. ECOLOGY, 2013, 94 (04) : 882 - 894
  • [22] Bayesian Inference for ARFIMA Models
    Durham, Garland
    Geweke, John
    Porter-Hudak, Susan
    Sowell, Fallaw
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2019, 40 (04) : 388 - 410
  • [23] Bayesian inference with misspecified models
    Walker, Stephen G.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (10) : 1621 - 1633
  • [24] Bayesian inference on biopolymer models
    Liu, JS
    Lawrence, CE
    [J]. BIOINFORMATICS, 1999, 15 (01) : 38 - 52
  • [25] Generative Modeling of Audible Shapes for Object Perception
    Zhang, Zhoutong
    Wu, Jiajun
    Li, Qiujia
    Huang, Zhengjia
    Traer, James
    McDermott, Josh H.
    Tenenbaum, Joshua B.
    Freeman, William T.
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 1260 - 1269
  • [26] VARIATIONAL BAYESIAN INFERENCE FOR STEREO OBJECT TRACKING
    Chantas, Giannis
    Nikolaidis, Nikos
    Pitas, Ioannis
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 2439 - 2443
  • [27] Structure Inference for Bayesian Multisensory Perception and Tracking
    Hospedales, Timothy M.
    Cartwright, Joel J.
    Vijayakumar, Sethu
    [J]. 20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 2122 - 2128
  • [28] Inference Over Distribution of Posterior Class Probabilities for Reliable Bayesian Classification and Object-Level Perception
    Tchuiev, Vladimir
    Indelman, Vadim
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2018, 3 (04): : 4329 - 4336
  • [29] BAYESIAN-INFERENCE AND THE PERCEPTION OF UNTEXTURED STEREOGRAMS
    NAKAYAMA, K
    SHIMOJO, S
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 1991, 32 (04) : 696 - 696
  • [30] Amortized Bayesian inference on generative dynamical network models of epilepsy using deep neural density estimators
    Hashemi, Meysam
    Vattikonda, Anirudh N.
    Jha, Jayant
    Sip, Viktor
    Woodman, Marmaduke M.
    Bartolomei, Fabrice
    Jirsa, Viktor K.
    [J]. NEURAL NETWORKS, 2023, 163 : 178 - 194