UNCERTAINTY PROPAGATION ANALYSIS OF THE AIRBORNE HYPERSPECTRAL DATA PROCESSING CHAIN

被引:0
|
作者
Beekhuizen, Johan [1 ]
Heuvelink, Gerard B. M. [1 ]
Reusen, Ils [2 ]
Biesemans, Jan [2 ]
机构
[1] Univ Wageningen & Res Ctr, Environm Sci Grp, Wageningen, Netherlands
[2] Flemish Inst Technol Res VITO, Dept Remote Sensing & Earth Observat Proc, Mol, Belgium
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The processing of airborne hyperspectral imagery introduces uncertainty. In order to quantify the uncertainty in the resulting hyperspectral imagery, a concept for Uncertainty Propagation Analysis (UPA) was developed and applied. The UPA entails the Monte Carlo stochastic simulation of uncertain components of the Processing and Archiving Facility (PAF), resulting in a chain of Monte Carlo analyses. First, the Probability Distribution Functions (PDF) of the uncertain model inputs have to be derived, from which numerous model inputs are simulated. By running the PAF using these sampled model inputs, a range of possible model outcomes or simulated realities is created. The simulation results of the final processing step provide valuable information for deriving quality layers. We applied an UPA of the boresight angles and a DEM to the VITO-PAF. Given the user requirement of pixel to sub-pixel accuracy with respect to the geo-location, results show that UPA is a powerful technique for the production of quality layers informing the user about the spatial-dependent total uncertainty and the contribution of uncertain model parameter in this total uncertainty.
引用
收藏
页码:466 / +
页数:2
相关论文
共 50 条
  • [41] Identification of Forest Vegetation Using Airborne Hyperspectral Data
    V. D. Egorov
    V. V. Kozoderov
    Izvestiya, Atmospheric and Oceanic Physics, 2021, 57 : 1538 - 1548
  • [42] Comparison of airborne and satellite hyperspectral data for geologic mapping
    Kruse, FA
    Boardman, JW
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY VIII, 2002, 4725 : 128 - 139
  • [43] TARGET DETECTION ALGORITHM FOR AIRBORNE THERMAL HYPERSPECTRAL DATA
    Marwaha, Richa
    Kumar, Anil
    Raju, P. L. N.
    Murthy, Y. V. N. Krishna
    ISPRS TECHNICAL COMMISSION VIII SYMPOSIUM, 2014, 40-8 : 827 - 832
  • [44] Daytime fire detection using airborne hyperspectral data
    Dennison, Philip E.
    Roberts, Dar A.
    REMOTE SENSING OF ENVIRONMENT, 2009, 113 (08) : 1646 - 1657
  • [45] Airborne hyperspectral data collection with the UMBC VNIR sensor
    Warner, J. X.
    Grossmann, J. M.
    Chu, D. A.
    Huemmrich, K. F.
    Warner, R. A.
    REMOTE SENSING OF AEROSOL AND CHEMICAL GASES, MODEL SIMULATION / ASSIMILATION, AND APPLICATIONS TO AIR QUALITY, 2006, 6299
  • [46] Regional Lithology Mapping Using Airborne Hyperspectral Data
    Qin, Kai
    Chen, Jianping
    Zhao, Jing-Jun
    Sun, Yu
    Qiu, Jun-Ting
    Zhang, Donghui
    2015 4TH INTERNATIONAL CONFERENCE ON ENERGY AND ENVIRONMENTAL PROTECTION (ICEEP 2015), 2015, : 1799 - 1804
  • [47] Bathymetry from fusion of airborne hyperspectral and laser data
    Kappus, ME
    Davis, CO
    Rhea, WJ
    IMAGING SPECTROMETRY IV, 1998, 3438 : 40 - 51
  • [48] Interpretation of Absorption Bands in Airborne Hyperspectral Radiance Data
    Szekielda, Karl H.
    Bowles, Jeffrey H.
    Gillis, David B.
    Miller, W. David
    SENSORS, 2009, 9 (04): : 2907 - 2925
  • [49] Uncertainty propagation in a supply chain or supply network
    Rezapour, Shabnam
    Allen, Janet K.
    Mistree, Farrokh
    TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW, 2015, 73 : 185 - 206
  • [50] Uncertainty modeling of data and uncertainty propagation for risk studies
    Wilcox, RC
    Ayyub, BM
    ISUMA 2003: FOURTH INTERNATIONAL SYMPOSIUM ON UNCERTAINTY MODELING AND ANALYSIS, 2003, : 184 - 191