All-optical tunable wavelength conversion in opaque nonlinear nanostructures

被引:11
|
作者
Gao, Jiannan [1 ]
Vincenti, Maria Antonietta [2 ]
Frantz, Jesse [3 ]
Clabeau, Anthony [4 ]
Qiao, Xingdu [5 ]
Feng, Liang [5 ]
Scalora, Michael [6 ]
Litchinitser, Natalia M. [1 ]
机构
[1] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
[2] Univ Brescia, Dept Informat Engn, Via Branze 38, I-25123 Brescia, Italy
[3] US Naval Res Lab, 4555 Overlook Ave,SW, Washington, DC 20375 USA
[4] Univ Res Fdn, 6411 Ivy Ln 110, Greenbelt, MD 20770 USA
[5] Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
[6] US Army CCDC, Aviat & Missile Ctr, Redstone Arsenal, Huntsville, AL 35898 USA
基金
美国国家科学基金会;
关键词
all-optical tunabilitiy; chalcogenide; femtosecond optics; nonlinear metasurface; phase-locking; 2ND-HARMONIC GENERATION; LIGHT WAVES; BOUNDARY; BAND; NM;
D O I
10.1515/nanoph-2022-0078
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We demonstrate a simple, femtosecond-scale wavelength tunable, subwavelength-thick nanostructure that performs efficient wavelength conversion from the infrared to the ultraviolet. The output wavelength can be tuned by varying the input power of the infrared pump beam and/or relative delay of the control beam with respect to the pump beam, and does not require any external realignment of the system. The nanostructure is made of chalcogenide glass that possesses strong Kerr nonlinearity and high linear refractive index, leading to strong field enhancement at Mie resonances. Although, as many other materials, chalcogenide glasses absorb in the ultraviolet range, fundamental phase-locking mechanism between the pump and the inhomogeneous portion of the third-harmonic signal enables ultraviolet transmission with little or no absorption.
引用
收藏
页码:4027 / 4035
页数:9
相关论文
共 50 条
  • [41] All-optical wavelength conversion based on nonlinear polarization rotation (NPR) in SOA and AWG filtering
    张君毅
    伍剑
    徐坤
    林金桐
    Chinese Optics Letters, 2006, (04) : 205 - 207
  • [42] All-optical wavelength conversion based on nonlinear polarization rotation (NPR) in SOA and AWG filtering
    Zhang, Junyi
    Wu, Jian
    Xu, Kun
    Lin, Jintong
    Chinese Optics Letters, 2006, 4 (04) : 205 - 207
  • [43] Photonic frontiers: Wavelength conversion - All-optical: the path to high-speed wavelength conversion
    Hecht, Jeff
    LASER FOCUS WORLD, 2007, 43 (08): : 109 - +
  • [44] Routing and wavelength assignment issues in the presence of wavelength conversion for all-optical networks
    Chu, XW
    Li, B
    Sohraby, K
    Zhang, ZS
    GLOBECOM'02: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-3, CONFERENCE RECORDS: THE WORLD CONVERGES, 2002, : 2787 - 2791
  • [45] All-optical wavelength conversion over C and L bands
    Kaewplung, P
    Chinthongprasert, N
    Thipchatchawanwong, P
    2005 PACIFIC RIM CONFERENCE ON LASERS AND ELECTRO-OPTICS, 2005, : 799 - 800
  • [46] Wavelength Conversion and All-Optical Regeneration: Achievements and Open Issues
    Ciaramella, Ernesto
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2012, 30 (04) : 572 - 582
  • [47] All-optical demultiplexing and wavelength conversion in an electro absorption modulator
    Oxenlowe, LK
    Hilliger, E
    Tersigni, A
    Nik, AM
    Hojfeldt, S
    Romstad, F
    Yvind, K
    Skovgaard, PMW
    Hoppe, K
    Hanberg, J
    ECOC'01: 27TH EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION, VOLS 1-6, 2001, : 604 - 605
  • [48] Field trials of all-optical networking based on wavelength conversion
    Beylat, J.-L.
    Chbat, Michel W.
    Jourdan, Amaury
    Perrier, P.A.
    Alcatel Telecommunications Review, 2003, (03): : 218 - 224
  • [49] A Research on All-optical Wavelength Conversion Technology based on SOA
    Wang, Binqi
    2021 11TH INTERNATIONAL CONFERENCE ON POWER, ENERGY AND ELECTRICAL ENGINEERING (CPEEE 2021), 2021, : 76 - 81
  • [50] All-optical wavelength conversion using active semiconductor devices
    Tsang, HK
    Mak, MWK
    Shu, C
    Chow, KK
    Tong, F
    ACTIVE AND PASSIVE OPTICAL COMPONENTS FOR WDM COMMUNICATION, 2001, 4532 : 93 - 100