The Bezout equation for functions of log-type growth in convex domains of finite type

被引:0
|
作者
Jasiczak, Michal [1 ]
机构
[1] Adam Mickiewicz Univ Poznan, Fac Math & Comp Sci, PL-61614 Poznan, Poland
关键词
Bezout equation; corona decomposition; partial derivative-equation; domain of finite type; spaces of holomorphic functions; CORONA TYPE DECOMPOSITION; PSEUDOCONVEX DOMAINS; ANALYTIC FUNCTIONS; INDUCTIVE LIMITS; H-P; BERGMAN; SPACES; BMOA;
D O I
10.1002/mana.200710015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to solve a division problem for the algebra of functions, which are holomorphic in a domain D subset of C(n), n > 1, and grow near the boundary not faster than some power of - log dist(z, bD). The domain D is assumed to be smoothly bounded and convex of finite d'Angelo type. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA. Weinheim
引用
收藏
页码:721 / 731
页数:11
相关论文
共 50 条