Solutions for dynamic variants of Eshelby's inclusion problem

被引:0
|
作者
Michelitsch, Thomas M. [1 ]
Askes, Harm [1 ]
Wang, Jizeng [2 ]
Levin, Valery M. [3 ]
机构
[1] Univ Sheffield, Dept Civil & Struct Engn, Mappin St, Sheffield S1 3JD, S Yorkshire, England
[2] Max Planck Inst Met Res, D-70569 Stuttgart, Germany
[3] Inst Mexicano Petr, Mexico City 07730, DF, Mexico
来源
关键词
dynamic variants of Eshelby inclusion problem; Helmholtz potentials; retarded potentials; wave equation; Helmholtz equation;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The dynamic variant of Eshelby's inclusion problem plays a crucial role in many areas of mechanics and theoretical physics. Because of its mathematical complexity, dynamic variants of the inclusion problems so far are only little touched. In this paper we derive solutions for dynamic variants of the Eshelby inclusion problem for arbitrary scalar source densities of the eigenstrain. We study a series of examples of Eshelby problems which are of interest for applications in materials sciences, such as for instance cubic and prismatic inclusions. The method which covers both the time and frequency domain is especially useful for dynamically transforming inclusions of any shape.
引用
收藏
页码:317 / +
页数:2
相关论文
共 50 条
  • [41] Eshelby problem of an arbitrary polygonal inclusion in anisotropic piezoelectric media with quadratic eigenstrains
    Yue, Y. M.
    Xu, K. Y.
    Chen, Q. D.
    Pan, E.
    ACTA MECHANICA, 2015, 226 (07) : 2365 - 2378
  • [42] A circular inclusion in a finite domain II. The Neumann-Eshelby problem
    G. Wang
    S. Li
    R. Sauer
    Acta Mechanica, 2005, 179 : 91 - 110
  • [43] A circular inclusion in a finite domain II. The Neumann-Eshelby problem
    Wang, G
    Li, S
    Sauer, R
    ACTA MECHANICA, 2005, 179 (1-2) : 91 - 110
  • [44] Eshelby problem of an arbitrary polygonal inclusion in anisotropic piezoelectric media with quadratic eigenstrains
    Y. M. Yue
    K. Y. Xu
    Q. D. Chen
    E. Pan
    Acta Mechanica, 2015, 226 : 2365 - 2378
  • [46] A circular inclusion in a finite domain I. The Dirichlet-Eshelby problem
    Li, S
    Sauer, R
    Wang, G
    ACTA MECHANICA, 2005, 179 (1-2) : 67 - 90
  • [47] Further results on Eshelby’s tensor of an elliptic inclusion in orthotropic materials
    Chun-Ron Chiang
    Acta Mechanica, 2018, 229 : 4831 - 4844
  • [48] Eshelby's problem in an anisotropic multiferroic bimaterial plane
    Zou, W. -N.
    Pan, E.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2012, 49 (13) : 1685 - 1700
  • [49] Eshelby's problem of non-elliptical inclusions
    Zou, Wennan
    He, Qichang
    Huang, Mojia
    Zheng, Quanshui
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2010, 58 (03) : 346 - 372
  • [50] Localized compaction in rocks: Eshelby's inclusion and the Spring Network Model
    Katsman, R.
    Aharonov, E.
    Scher, H.
    GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (10)