Existence of solutions for nonperiodic superquadratic Hamiltonian elliptic systems

被引:17
|
作者
Wang, Jun [1 ]
Xu, Junxiang [1 ]
Zhang, Fubao [1 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 210096, Peoples R China
关键词
Hamiltonian elliptic system; Variational methods; Generalized linking theorem; LEAST ENERGY SOLUTIONS; MULTIPLE SOLUTIONS; THEOREMS; STATES; DECAY;
D O I
10.1016/j.na.2009.09.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the following nonperiodic Hamiltonian elliptic system {-Delta u + V(x)u = R-v(x, u, v) in R-N, -Delta v + V(x)v = R-u(x, u, v) in R-N, u(x) -> 0 and v (x) -> 0 as vertical bar x vertical bar -> infinity, where R(x, z) is superquadratic in z as vertical bar z vertical bar -> infinity with z = (u, v). By applying a critical point theorem for strongly indefinite functionals, we prove the existence of solution for the above system. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1949 / 1960
页数:12
相关论文
共 50 条
  • [21] Multiple solutions for asymptotically quadratic and superquadratic elliptic system of Hamiltonian type
    Zhang, Wen
    Zhang, Jian
    Zhao, Fukun
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 263 : 36 - 46
  • [22] Periodic and subharmonic solutions for a class of superquadratic Hamiltonian systems
    Ou, ZQ
    Tang, CL
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 58 (3-4) : 245 - 258
  • [23] Periodic and subharmonic solutions of a class of superquadratic Hamiltonian systems
    Chen, SJ
    Tang, CL
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 297 (01) : 267 - 284
  • [24] EXISTENCE OF GROUND STATE SOLUTIONS FOR HAMILTONIAN ELLIPTIC SYSTEMS WITH GRADIENT TERMS
    Jin, Yunjuan
    Yang, Minbo
    MATHEMATICA SLOVACA, 2015, 65 (01) : 141 - 156
  • [25] EXISTENCE OF SOLUTIONS FOR SINGULARLY PERTURBED HAMILTONIAN ELLIPTIC SYSTEMS WITH NONLOCAL NONLINEARITIES
    Yang, Minbo
    Wei, Yuanhong
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2014, 43 (02) : 385 - 402
  • [26] Existence and symmetry breaking results for positive solutions of elliptic Hamiltonian systems
    Moameni, Abbas
    Wong, Kok Lin
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2024,
  • [27] Existence and symmetry of least energy nodal solutions for Hamiltonian elliptic systems
    Bonheure, Denis
    dos Santos, Ederson Moreira
    Ramos, Miguel
    Tavares, Hugo
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (06): : 1075 - 1107
  • [28] PERIODIC-SOLUTIONS OF SUPERQUADRATIC HAMILTONIAN-SYSTEMS
    FELMER, PL
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 102 (01) : 188 - 207
  • [29] Existence of Homoclinic Orbits of Superquadratic Second-Order Hamiltonian Systems
    Guo, Chengjun
    O'Regan, Donal
    Wang, Chengjiang
    Agarwal, Ravi P.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2015, 34 (01): : 27 - 41
  • [30] Minimal period estimates of periodic solutions for superquadratic Hamiltonian systems
    Fei, GH
    Kim, SK
    Wang, TX
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 238 (01) : 216 - 233