Fast Nonparametric Clustering of Structured Time-Series

被引:35
|
作者
Hensman, James [1 ,2 ]
Rattray, Magnus [3 ]
Lawrence, Neil D. [1 ,2 ]
机构
[1] Univ Sheffield, Dept Comp Sci, Sheffield S10 2TN, S Yorkshire, England
[2] Univ Sheffield, Sheffield Inst Translat Neurosci, Sheffield S10 2TN, S Yorkshire, England
[3] Univ Manchester, Fac Life Sci, Manchester, Lancs, England
基金
英国医学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
Variational Bayes; Gaussian processes; structured time series; gene expression; GENE-EXPRESSION; VARIATIONAL INFERENCE; MODELS;
D O I
10.1109/TPAMI.2014.2318711
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this publication, we combine two Bayesian nonparametric models: the Gaussian Process (GP) and the Dirichlet Process (DP). Our innovation in the GP model is to introduce a variation on the GP prior which enables us to model structured time-series data, i.e., data containing groups where we wish to model inter-and intra-group variability. Our innovation in the DP model is an implementation of a new fast collapsed variational inference procedure which enables us to optimize our variational approximation significantly faster than standard VB approaches. In a biological time series application we show how our model better captures salient features of the data, leading to better consistency with existing biological classifications, while the associated inference algorithm provides a significant speed-up over EM-based variational inference.
引用
收藏
页码:383 / 393
页数:11
相关论文
共 50 条
  • [21] NONPARAMETRIC IDENTIFICATION OF A PARTICULAR NONLINEAR TIME-SERIES SYSTEM
    GREBLICKI, W
    PAWLAK, M
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1992, 40 (04) : 985 - 989
  • [22] NONPARAMETRIC SMOOTHING OF ALMOST ANNUALLY PERIODIC TIME-SERIES
    HUTCHINSON, MF
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 1992, 33 (5-6) : 495 - 500
  • [23] NONPARAMETRIC IDENTIFICATION OF A CASCADE NONLINEAR TIME-SERIES SYSTEM
    GREBLICKI, W
    PAWLAK, M
    [J]. SIGNAL PROCESSING, 1991, 22 (01) : 61 - 75
  • [24] Key radar signal fast recognition method based on clustering and time-series correlation
    Zhang, Yixiao
    Guo, Wenpu
    Kang, Kai
    Yao, Yunlong
    Wang, Pan
    [J]. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2020, 42 (03): : 597 - 602
  • [25] Translational symmetry in subsequence time-series clustering
    Ide, Tsuyoshi
    [J]. NEW FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2007, 4384 : 5 - 18
  • [26] Clustering to Forecast Sparse Time-Series Data
    Jha, Abhay
    Ray, Shubhankar
    Seaman, Brian
    Dhillon, Inderjit S.
    [J]. 2015 IEEE 31ST INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2015, : 1388 - 1399
  • [27] Logical Clustering and Learning for Time-Series Data
    Vazquez-Chanlatte, Marcell
    Deshmukh, Jyotirmoy V.
    Jin, Xiaoqing
    Seshia, Sanjit A.
    [J]. COMPUTER AIDED VERIFICATION, CAV 2017, PT I, 2017, 10426 : 305 - 325
  • [28] Time-series data dynamic density clustering
    Chen, Hao
    Xia, Yu
    Pan, Yuekai
    Yang, Qing
    [J]. INTELLIGENT DATA ANALYSIS, 2021, 25 (06) : 1487 - 1506
  • [29] Fuzzy clustering based segmentation of time-series
    Abonyi, J
    Feil, B
    Nemeth, S
    Arva, P
    [J]. ADVANCES IN INTELLIGENT DATA ANALYSIS V, 2003, 2810 : 275 - 285
  • [30] Hierarchical clustering of time-series data streams
    Rodrigues, Pedro Pereira
    Gama, Joao
    Pedroso, Joao Pedro
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2008, 20 (05) : 615 - 627