Fast Nonparametric Clustering of Structured Time-Series

被引:35
|
作者
Hensman, James [1 ,2 ]
Rattray, Magnus [3 ]
Lawrence, Neil D. [1 ,2 ]
机构
[1] Univ Sheffield, Dept Comp Sci, Sheffield S10 2TN, S Yorkshire, England
[2] Univ Sheffield, Sheffield Inst Translat Neurosci, Sheffield S10 2TN, S Yorkshire, England
[3] Univ Manchester, Fac Life Sci, Manchester, Lancs, England
基金
英国医学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
Variational Bayes; Gaussian processes; structured time series; gene expression; GENE-EXPRESSION; VARIATIONAL INFERENCE; MODELS;
D O I
10.1109/TPAMI.2014.2318711
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this publication, we combine two Bayesian nonparametric models: the Gaussian Process (GP) and the Dirichlet Process (DP). Our innovation in the GP model is to introduce a variation on the GP prior which enables us to model structured time-series data, i.e., data containing groups where we wish to model inter-and intra-group variability. Our innovation in the DP model is an implementation of a new fast collapsed variational inference procedure which enables us to optimize our variational approximation significantly faster than standard VB approaches. In a biological time series application we show how our model better captures salient features of the data, leading to better consistency with existing biological classifications, while the associated inference algorithm provides a significant speed-up over EM-based variational inference.
引用
收藏
页码:383 / 393
页数:11
相关论文
共 50 条