Krylov-subspace methods for reduced-order modeling in circuit simulation

被引:299
|
作者
Freund, RW [1 ]
机构
[1] Bell Labs, Lucent Technol, Murray Hill, NJ 07974 USA
关键词
Lanczos algorithm; Arnoldi process; linear dynamical system; VLSI interconnect; transfer function; Pade approximation; stability; passivity; positive real function;
D O I
10.1016/S0377-0427(00)00396-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The simulation of electronic circuits involves the numerical solution of very large-scale, sparse, in general nonlinear, systems of differential-algebraic equations. Often, the size of these systems can be reduced considerably by replacing the equations corresponding to linear subcircuits by approximate models of much smaller state-space dimension. In this paper, we describe the use of Krylov-subspace methods for generating such reduced-order models of linear subcircuits. Particular emphasis is on reduced-order modeling techniques that preserve the passivity of linear RLC subcircuits. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:395 / 421
页数:27
相关论文
共 50 条
  • [31] Trajectory Reduced-Order Modeling Using Indirect Methods
    Sparapany, Michael J.
    Grant, Michael J.
    [J]. 2020 IEEE AEROSPACE CONFERENCE (AEROCONF 2020), 2020,
  • [32] A Krylov-subspace technique for the simulation of integrated RF/microwave subsystems driven by digitally modulated carriers
    Rizzoli, V
    Neri, A
    Mastri, F
    Lipparini, A
    [J]. INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, 1999, 9 (06) : 490 - 505
  • [33] Model Reduction for Linear Simulated Moving Bed Chromatography Systems Using Krylov-Subspace Methods
    Li, Suzhou
    Yue, Yao
    Feng, Lihong
    Benner, Peter
    Seidel-Morgenstern, Andreas
    [J]. AICHE JOURNAL, 2014, 60 (11) : 3773 - 3783
  • [34] Orthogonalisation in Krylov subspace methods for model order reduction
    Heres, P. J.
    Schilders, W. H. A.
    [J]. SCIENTIFIC COMPUTING IN ELECTRICAL ENGINEERING, 2006, 9 : 39 - +
  • [35] Modeling of first-order photobleaching kinetics using Krylov subspace spectral methods
    Sheikholeslami, Somayyeh
    Lambers, James V.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (06) : 2153 - 2172
  • [36] Efficient Krylov-subspace simulation of autonomous RF/microwave circuits driven by digitally modulated carriers
    Rizzoli, V
    Costanzo, A
    Mastri, F
    [J]. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2001, 11 (07) : 308 - 310
  • [37] Error estimation of reduced-order modeling of high speed RLCG circuit
    Lu, NL
    Hajj, IN
    [J]. IEEE SYMPOSIUM ON IC/PACKAGE DESIGN INTEGRATION - PROCEEDINGS, 1998, : 143 - 148
  • [38] Using Krylov-subspace iterations in discontinuous Galerkin methods for nonlinear reaction-diffusion systems
    Estep, DJ
    Freund, RW
    [J]. DISCONTINUOUS GALERKIN METHODS: THEORY, COMPUTATION AND APPLICATIONS, 2000, 11 : 327 - 335
  • [39] Causal reduced-order modeling of distributed structures in a transient circuit simulator
    Mohan, R
    Choi, MJ
    Mick, SE
    Hart, FP
    Chandrasekar, K
    Cangellaris, AC
    Franzon, PD
    Steer, MB
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2004, 52 (09) : 2207 - 2214
  • [40] Reveal: An Extensible Reduced-Order Model Builder for Simulation and Modeling
    Agarwal, Khushbu
    Sharma, Poorva
    Ma, Jinliang
    Lo, Chaomei
    Gorton, Ian
    Liu, Yan
    [J]. COMPUTING IN SCIENCE & ENGINEERING, 2014, 16 (02) : 44 - 53