Krylov-subspace methods for reduced-order modeling in circuit simulation

被引:299
|
作者
Freund, RW [1 ]
机构
[1] Bell Labs, Lucent Technol, Murray Hill, NJ 07974 USA
关键词
Lanczos algorithm; Arnoldi process; linear dynamical system; VLSI interconnect; transfer function; Pade approximation; stability; passivity; positive real function;
D O I
10.1016/S0377-0427(00)00396-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The simulation of electronic circuits involves the numerical solution of very large-scale, sparse, in general nonlinear, systems of differential-algebraic equations. Often, the size of these systems can be reduced considerably by replacing the equations corresponding to linear subcircuits by approximate models of much smaller state-space dimension. In this paper, we describe the use of Krylov-subspace methods for generating such reduced-order models of linear subcircuits. Particular emphasis is on reduced-order modeling techniques that preserve the passivity of linear RLC subcircuits. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:395 / 421
页数:27
相关论文
共 50 条
  • [1] Passive reduced-order modeling via Krylov-subspace methods
    Freund, RW
    [J]. PROCEEDINGS OF THE 2000 IEEE INTERNATIONAL SYMPOSIUM ON COMPUTER-AIDED CONTROL SYSTEM DESIGN, 2000, : 261 - 266
  • [2] Generating nearly optimally compact models from Krylov-subspace based reduced-order models
    Kamon, M
    Wang, F
    White, J
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2000, 47 (04) : 239 - 248
  • [3] KRYLOV-SUBSPACE METHODS FOR THE SYLVESTER EQUATION
    HU, DY
    REICHEL, L
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 172 : 283 - 313
  • [4] Macromodelling oscillators using Krylov-subspace methods
    Lai, Xiaolue
    Roychowdhury, Jaijeet
    [J]. ASP-DAC 2006: 11TH ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE, PROCEEDINGS, 2006, : 527 - 532
  • [5] Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems
    Bai, ZJ
    [J]. APPLIED NUMERICAL MATHEMATICS, 2002, 43 (1-2) : 9 - 44
  • [6] Krylov-Subspace Based Model Order Reduction For Field-circuit Coupled Systems
    Nabi, M.
    Bazaz, M. A.
    Guha, P.
    [J]. 2009 EUROPEAN CONFERENCE ON CIRCUIT THEORY AND DESIGN, VOLS 1 AND 2, 2009, : 480 - +
  • [7] Generalized distributed nonlinear device modeling for Krylov-subspace based microwave circuit analysis
    Rizzoli, V
    Masotti, D
    Mastri, F
    Cecchetti, C
    [J]. 2000 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-3, 2000, : 453 - 456
  • [8] POWER GRIDS ANALYSIS IN COMPRESSED KRYLOV-SUBSPACE METHODS
    Su, Haohang
    Zhang, Yimen
    Zhang, Yuming
    Man, Jincai
    [J]. JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2008, 17 (03) : 439 - 446
  • [9] Krylov subspace method for passive reduced-order modelling of electrical networks
    Liu, Bo
    Du, Zhengchun
    [J]. IET GENERATION TRANSMISSION & DISTRIBUTION, 2018, 12 (07) : 1531 - 1537
  • [10] Proper orthogonal decomposition versus Krylov subspace methods in reduced-order energy-converter models
    Hasan, M. D. Rokibul
    Sabariego, Ruth V.
    Geuzaine, Christophe
    Paquay, Yannick
    [J]. 2016 IEEE INTERNATIONAL ENERGY CONFERENCE (ENERGYCON), 2016,