EM algorithm;
longitudinal data;
maximum likelihood;
progressive models;
LOCAL INFLUENCE APPROACH;
PANEL COUNT DATA;
REGRESSION-ANALYSIS;
DEPENDENT OBSERVATION;
FAILURE TIME;
MISSING-DATA;
COVARIATE;
EVENTS;
CHAIN;
D O I:
10.1002/sim.3804
中图分类号:
Q [生物科学];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Irreversible multi-state models provide a convenient framework for characterizing disease processes that arise when the states represent the degree of organ or tissue damage incurred by a progressive disease. In many settings, however, individuals are only observed at periodic clinic visits and so the precise times of the transitions are not observed. If the life history and observation processes are not independent, the observation process contains information about the life history process, and more importantly, likelihoods based on the disease process alone are invalid. With interval-censored failure time data, joint models are nonidentifiable and data analysts must rely on sensitivity analyses to assess the effect of the dependent observation times. This paper is concerned, however, with the analysis of data from progressive multi-state disease processes in which individuals are scheduled to be seen at periodic pre-scheduled assessment times. We cast the problem in the framework used for incomplete longitudinal data problems. Maximum likelihood estimation via an EM algorithm is advocated for parameter estimation. Simulation studies demonstrate that the proposed method works well under a variety of situations. Data from a cohort of patients with psoriatic arthritis are analyzed for illustration. Copyright (C) 2010 John Wiley & Sons, Ltd.
机构:
Univ Reading, Med & Pharmaceut Stat Res Unit, Reading RG6 6FN, Berks, EnglandUniv Reading, Med & Pharmaceut Stat Res Unit, Reading RG6 6FN, Berks, England
Stallard, N
Whitehead, A
论文数: 0引用数: 0
h-index: 0
机构:
Univ Reading, Med & Pharmaceut Stat Res Unit, Reading RG6 6FN, Berks, EnglandUniv Reading, Med & Pharmaceut Stat Res Unit, Reading RG6 6FN, Berks, England
机构:
Charles Univ Prague, Dept Probabil & Math Stat, Fac Math & Phys, CZ-18675 Prague 8, Karlin, Czech RepublicCharles Univ Prague, Dept Probabil & Math Stat, Fac Math & Phys, CZ-18675 Prague 8, Karlin, Czech Republic
Komarek, Arnost
Lesaffre, Emmanuel
论文数: 0引用数: 0
h-index: 0
机构:
Erasmus Univ, Dept Biostat, NL-3000 DR Rotterdam, Netherlands
Katholieke Univ Leuven, Interuniv Inst Biostat & Stat Bioinformat, Louvain, Belgium
Univ Hasselt, Diepenbeek, BelgiumCharles Univ Prague, Dept Probabil & Math Stat, Fac Math & Phys, CZ-18675 Prague 8, Karlin, Czech Republic
机构:
Univ Colorado, Sch Med, Dept Biochem & Mol Genet, Anschutz Med Campus, Aurora, CO 80045 USAUniv Northern Iowa, Dept Phys, Cedar Falls, IA 50614 USA
Ghoneim, Mohamed
Caldwell, Colleen C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Iowa, Dept Biochem, Iowa City, IA 52242 USAUniv Northern Iowa, Dept Phys, Cedar Falls, IA 50614 USA
Caldwell, Colleen C.
Buzynski, Troy
论文数: 0引用数: 0
h-index: 0
机构:
Univ Northern Iowa, Dept Phys, Cedar Falls, IA 50614 USAUniv Northern Iowa, Dept Phys, Cedar Falls, IA 50614 USA
Buzynski, Troy
Bowie, Wayne
论文数: 0引用数: 0
h-index: 0
机构:
Univ Northern Iowa, Dept Phys, Cedar Falls, IA 50614 USAUniv Northern Iowa, Dept Phys, Cedar Falls, IA 50614 USA
Bowie, Wayne
Boehm, Elizabeth M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Iowa, Dept Biochem, Iowa City, IA 52242 USAUniv Northern Iowa, Dept Phys, Cedar Falls, IA 50614 USA
Boehm, Elizabeth M.
Washington, M. Todd
论文数: 0引用数: 0
h-index: 0
机构:
Univ Iowa, Dept Biochem, Iowa City, IA 52242 USAUniv Northern Iowa, Dept Phys, Cedar Falls, IA 50614 USA
Washington, M. Todd
Tabei, S. M. Ali
论文数: 0引用数: 0
h-index: 0
机构:
Univ Northern Iowa, Dept Phys, Cedar Falls, IA 50614 USAUniv Northern Iowa, Dept Phys, Cedar Falls, IA 50614 USA
Tabei, S. M. Ali
Spies, Maria
论文数: 0引用数: 0
h-index: 0
机构:
Univ Iowa, Dept Biochem, Iowa City, IA 52242 USAUniv Northern Iowa, Dept Phys, Cedar Falls, IA 50614 USA