Accurate surface and adsorption energies from many-body perturbation theory

被引:0
|
作者
Schimka, L. [1 ,2 ]
Harl, J. [1 ,2 ]
Stroppa, A. [3 ]
Grueneis, A. [1 ,2 ]
Marsman, M. [1 ,2 ]
Mittendorfer, F. [1 ,2 ]
Kresse, G. [1 ,2 ]
机构
[1] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
[2] Ctr Computat Mat Sci, A-1090 Vienna, Austria
[3] CNR SPIN, I-67010 Laquila, Italy
关键词
DENSITY-FUNCTIONAL THEORY; AUGMENTED-WAVE METHOD; CO ADSORPTION; ELECTRON-GAS; METALS; PT(111); CO/PT(111);
D O I
10.1038/NMAT2806
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Kohn-Sham density functional theory is the workhorse computational method in materials and surface science(1). Unfortunately, most semilocal density functionals predict surfaces to be more stable than they are experimentally. Naively, we would expect that consequently adsorpion energies on surfaces are too small as well, but the contrary is often found: chemisorption energies are usually overestimated(2). Modifying the functional improves either the adsorption energy or the surface energy but always worsens the other aspect. This suggests that semilocal density functionals possess a fundamental flaw that is difficult to cure, and alternative methods are urgently needed. Here we show that a computationally fairly efficient many-electron approach, the random phase approximation(3) to the correlation energy, resolves this dilemma and yields at the same time excellent lattice constants, surface energies and adsorption energies for carbon monoxide and benzene on transition-metal surfaces.
引用
收藏
页码:741 / 744
页数:4
相关论文
共 50 条
  • [1] Accurate surface and adsorption energies from many-body perturbation theory
    Schimka L.
    Harl J.
    Stroppa A.
    Grüneis A.
    Marsman M.
    Mittendorfer F.
    Kresse G.
    [J]. Nature Materials, 2010, 9 (9) : 741 - 744
  • [2] Benchmark Database of Transition Metal Surface and Adsorption Energies from Many-Body Perturbation Theory
    Schmidt, Per S.
    Thygesen, Kristian S.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (08): : 4381 - 4390
  • [3] Many-body perturbation theory for quasiparticle energies
    Sun, JQ
    Bartlett, RJ
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (13): : 5058 - 5071
  • [4] Optimized quasiparticle energies in many-body perturbation theory
    Surján, PR
    Kohalmi, D
    Szabados, A
    [J]. COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS, 2003, 68 (02) : 331 - 339
  • [5] Stochastic many-body perturbation theory for electron correlation energies
    Li, Zhendong
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2019, 151 (24):
  • [6] Toward more accurate surface properties of ceria using many-body perturbation theory
    Wei, Ziyang
    Yan, George
    Sautet, Philippe
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2023, 159 (05):
  • [7] MANY-BODY PERTURBATION THEORY
    TOBOCMAN, W
    [J]. PHYSICAL REVIEW, 1957, 107 (01): : 203 - 208
  • [8] EXCITATION-ENERGIES WITH MULTIREFERENCE MANY-BODY PERTURBATION-THEORY
    MEISSNER, L
    KUCHARSKI, SA
    BARTLETT, RJ
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1990, 93 (03): : 1847 - 1856
  • [9] Spectra and total energies from self-consistent many-body perturbation theory
    Schindlmayr, A
    Pollehn, TJ
    Godby, RW
    [J]. PHYSICAL REVIEW B, 1998, 58 (19) : 12684 - 12690
  • [10] ACCURATE BINDING-ENERGIES OF DIBORANE, BORANE CARBONYL, AND BORAZANE DETERMINED BY MANY-BODY PERTURBATION-THEORY
    REDMON, LT
    PURVIS, GD
    BARTLETT, RJ
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1979, 101 (11) : 2856 - 2862