Toward more accurate surface properties of ceria using many-body perturbation theory

被引:1
|
作者
Wei, Ziyang [1 ]
Yan, George [2 ]
Sautet, Philippe [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2023年 / 159卷 / 05期
基金
美国国家科学基金会;
关键词
EXCHANGE-CORRELATION ENERGY; WATER-GAS SHIFT; H-2; DISSOCIATION; HYDROGENATION; CEO2(111); APPROXIMATION; CATALYSIS; OXIDATION; OXIDES;
D O I
10.1063/5.0161084
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Despite the wide applications, the ab initio modeling of the ceria based catalyst is challenging. The partial occupation in the 4f orbitals creates a fundamental challenge for commonly used density functional theory (DFT) methods, including semilocal functionals with Hubbard U correction to force localization and hybrid functionals. In this work, we benchmark the random phase approximation (RPA) for ceria surface properties, including surface energy and hydrogenation energy, compared to the results utilizing the DFT + U approach or hybrid functionals. We show that, for the latter approaches, different surface properties require opposite directions of parameter tuning. This forms a dilemma for the parameter based DFT methods, as the improvement of a certain property by tuning parameters will inevitably lead to the worsening of other properties. Our results suggest that the parameter-free many-body perturbation theory methods exemplified by RPA are a promising strategy to escape the dilemma and provide highly accurate descriptions, which will allow us to better understand the catalytic reactions in ceria related systems.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Accurate surface and adsorption energies from many-body perturbation theory
    Schimka, L.
    Harl, J.
    Stroppa, A.
    Grueneis, A.
    Marsman, M.
    Mittendorfer, F.
    Kresse, G.
    NATURE MATERIALS, 2010, 9 (09) : 741 - 744
  • [2] MANY-BODY PERTURBATION THEORY
    TOBOCMAN, W
    PHYSICAL REVIEW, 1957, 107 (01): : 203 - 208
  • [3] Development of many-body perturbation theory
    Lindgren, Ingvar
    MOLECULAR PHYSICS, 2010, 108 (21-23) : 2853 - 2861
  • [4] A note on the many-body perturbation theory
    Farid, B
    PHILOSOPHICAL MAGAZINE LETTERS, 1999, 79 (08) : 581 - 593
  • [5] More many-body perturbation theory for an electron-ion system
    Baker, GA
    Johnson, JD
    CONDENSED MATTER THEORIES, VOL 13, 1998, 13 : 185 - 196
  • [6] Optoelectronic Properties of Chalcogenide Perovskites by Many-Body Perturbation Theory
    Kumar, Manish
    Singh, Arunima
    Gill, Deepika
    Bhattacharya, Saswata
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (22): : 5301 - 5307
  • [7] CONVERGENCE PROPERTIES OF MULTIREFERENCE MANY-BODY PERTURBATION-THEORY
    ZARRABIAN, S
    LAIDIG, WD
    BARTLETT, RJ
    PHYSICAL REVIEW A, 1990, 41 (09): : 4711 - 4720
  • [8] Many-body perturbation theory calculations using the yambo code
    Sangalli, D.
    Ferretti, A.
    Miranda, H.
    Attaccalite, C.
    Marri, I
    Cannuccia, E.
    Melo, P.
    Marsili, M.
    Paleari, F.
    Marrazzo, A.
    Prandini, G.
    Bonfa, P.
    Atambo, M. O.
    Affinito, F.
    Palummo, M.
    Molina-Sanchez, A.
    Hogan, C.
    Gruning, M.
    Varsano, D.
    Marini, A.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2019, 31 (32)
  • [9] Many-body procedure for energy-dependent perturbation: Merging many-body perturbation theory with QED
    Lindgren, Ingvar
    Salomonson, Sten
    Hedendahl, Daniel
    PHYSICAL REVIEW A, 2006, 73 (06)
  • [10] MULTIREFERENCE MANY-BODY PERTURBATION-THEORY
    KUCHARSKI, SA
    BARTLETT, RJ
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1988, : 383 - 405