The local density of triangle-free graphs

被引:11
|
作者
Brandt, S [1 ]
机构
[1] Free Univ Berlin, FB Math & Informat, D-14195 Berlin, Germany
关键词
local density; triangle-free graph; spectrum; least eigenvalue; making graphs bipartite;
D O I
10.1016/S0012-365X(97)00074-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
How dense can every induced subgraph of right perpendicular alpha n left perpendicular vertices (0 < alpha less than or equal to 1) of a triangle-free graph of order n be? Tools will be developed to estimate the local density of graphs, based on the spectrum of the graph and on a fractional viewpoint. These tools are used to refute a conjecture of Erdos et al. about the local density of triangle-free graphs for a certain range of alpha, by estimating the local density of the Higman-Sims graph via its eigenvalues. Moreover, the local density will be related to a long-standing conjecture of Erdos, saying that every triangle-free graph can be made bipartite by the omission of at most n(2)/25 edges. Finally, a conjecture about the spectrum of regular triangle-free graphs is raised, which can be seen as a common relaxation of the two previous questions.
引用
收藏
页码:17 / 25
页数:9
相关论文
共 50 条
  • [1] Bipartite induced density in triangle-free graphs
    van Batenburg, Wouter Cames
    de Verclos, Remi de Joannis
    Kang, Ross J.
    Pirot, Francois
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (02): : 1 - 19
  • [2] Bipartite density of triangle-free subcubic graphs
    Zhu, Xuding
    [J]. DISCRETE APPLIED MATHEMATICS, 2009, 157 (04) : 710 - 714
  • [3] Triangle-free subcubic graphs with minimum bipartite density
    Xu, Baogang
    Yu, Xingxing
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (03) : 516 - 537
  • [4] Coloring triangle-free graphs with local list sizes
    Davies, Ewan
    de Joannis de Verclos, Remi
    Kang, Ross J.
    Pirot, Francois
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2020, 57 (03) : 730 - 744
  • [5] Large Cuts with Local Algorithms on Triangle-Free Graphs
    Hirvonen, Juho
    Rybicki, Joel
    Schmid, Stefan
    Suomela, Jukka
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (04):
  • [6] Median graphs and triangle-free graphs
    Imrich, W
    Klavzar, S
    Mulder, HM
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 1999, 12 (01) : 111 - 118
  • [7] Triangle-free equimatchable graphs
    Buyukcolak, Yasemin
    Ozkan, Sibel
    Gozupek, Didem
    [J]. JOURNAL OF GRAPH THEORY, 2022, 99 (03) : 461 - 484
  • [8] ON MAXIMAL TRIANGLE-FREE GRAPHS
    ERDOS, P
    HOLZMAN, R
    [J]. JOURNAL OF GRAPH THEORY, 1994, 18 (06) : 585 - 594
  • [9] Triangle-free polyconvex graphs
    Isaksen, DC
    Robinson, B
    [J]. ARS COMBINATORIA, 2002, 64 : 259 - 263
  • [10] On the evolution of triangle-free graphs
    Steger, A
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2005, 14 (1-2): : 211 - 224