Fuzzy rough clustering for categorical data

被引:11
|
作者
Xu, Shuliang [1 ]
Liu, Shenglan [2 ]
Zhou, Jian [1 ]
Feng, Lin [2 ]
机构
[1] Dalian Univ Technol, Fac Elect Informat & Elect Engn, Dalian, Peoples R China
[2] Dalian Univ Technol, Sch Innovat & Entrepreneurship, Dalian, Peoples R China
关键词
Cluster analysis; Rough set; Categorical data; Granular computing; Dimension reduction; ALGORITHM; UNCERTAINTY;
D O I
10.1007/s13042-019-01012-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unlabeled categorical data is common in many applications. Because there is no geometric structure for categorical data, how to discover knowledge and patterns from unlabeled categorical data is an important problem. In this paper, a fuzzy rough clustering algorithm for categorical data is proposed. The proposed algorithm uses the partition of each attribute to calculate the granularity of each attribute and introduces information granularity to measure the significance of each attribute. It is different from traditional clustering algorithms for categorical data that the proposed algorithm can transform categorical data set into numeric data set and introduces a nonlinear dimension reduction algorithm to decrease the dimensions of data set. The proposed algorithm and the comparison algorithms are executed on real data sets. The experimental results show that the proposed algorithm outperforms the comparison algorithms on the most data sets and the results prove that the proposed algorithm is an effective clustering algorithm for categorical data sets.
引用
收藏
页码:3213 / 3223
页数:11
相关论文
共 50 条
  • [1] Fuzzy rough clustering for categorical data
    Shuliang Xu
    Shenglan Liu
    Jian Zhou
    Lin Feng
    [J]. International Journal of Machine Learning and Cybernetics, 2019, 10 : 3213 - 3223
  • [2] Integrated Rough Fuzzy Clustering for Categorical data Analysis
    Saha, Indrajit
    Sarkar, Jnanendra Prasad
    Maulik, Ujjwal
    [J]. FUZZY SETS AND SYSTEMS, 2019, 361 : 1 - 32
  • [3] Ensemble based rough fuzzy clustering for categorical data
    Saha, Indrajit
    Sarkar, Jnanendra Prasad
    Maulik, Ujjwal
    [J]. KNOWLEDGE-BASED SYSTEMS, 2015, 77 : 114 - 127
  • [4] Rough Set Approach for Categorical Data Clustering
    Herawan, Tutut
    Yanto, Iwan Tri Riyadi
    Deris, Mustafa Mat
    [J]. DATABASE THEORY AND APPLICATION, 2009, 64 : 179 - 186
  • [5] Formulations of fuzzy clustering for categorical data
    Umayahara, Kazutaka
    Miyamoto, Sadaaki
    Nakamori, Yoshiteru
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2005, 1 (01): : 83 - 94
  • [6] Fuzzy clustering for categorical multivariate data
    Oh, CH
    Honda, K
    Ichihashi, H
    [J]. JOINT 9TH IFSA WORLD CONGRESS AND 20TH NAFIPS INTERNATIONAL CONFERENCE, PROCEEDINGS, VOLS. 1-5, 2001, : 2154 - 2159
  • [7] Fuzzy Rough Attribute Reduction for Categorical Data
    Wang, Changzhong
    Wang, Yan
    Shao, Mingwen
    Qian, Yuhua
    Chen, Degang
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2020, 28 (05) : 818 - 830
  • [8] Fuzzy clustering of categorical data using fuzzy centroids
    Kim, DW
    Lee, KH
    Lee, D
    [J]. PATTERN RECOGNITION LETTERS, 2004, 25 (11) : 1263 - 1271
  • [9] Detecting outliers in categorical data through rough clustering
    Suri, N. N. R. Ranga
    Murty, M. Narasimha
    Athithan, G.
    [J]. NATURAL COMPUTING, 2016, 15 (03) : 385 - 394
  • [10] Clustering Categorical Data Using Rough Membership Function
    Kumar, B. Suresh
    Reddy, H. Venkateswara
    Raju, T. Ankamma
    Vennam, Preethi
    [J]. 2014 6TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS, 2014, : 602 - 607