Rough Set Approach for Categorical Data Clustering

被引:0
|
作者
Herawan, Tutut [1 ]
Yanto, Iwan Tri Riyadi [1 ]
Deris, Mustafa Mat [1 ]
机构
[1] Univ Tun Hussein Onn Malaysia, FTMM, Johor Baharu, Malaysia
来源
关键词
Clustering; Categorical data; Rough set theory; Attributes dependencies; ALGORITHM;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we focus our discussion on the rough set approach for categorical data clustering. We propose MADE (Maximal Attributes Dependency), an alternative technique for categorical data clustering using rough set theory taking into account maximal attributes dependencies. Experimental results on two benchmark UCI datasets show that MADE technique is better with the baseline categorical data clustering techniques with respect to computational complexity and clusters purity.
引用
收藏
页码:179 / 186
页数:8
相关论文
共 50 条
  • [1] Rough set based information theoretic approach for clustering uncertain categorical data
    Uddin, Jamal
    Ghazali, Rozaida
    Abawajy, Jemal H.
    Shah, Habib
    Husaini, Noor Aida
    Zeb, Asim
    [J]. PLOS ONE, 2022, 17 (05):
  • [2] Rough set approach for clustering categorical data using information-theoretic dependency measure
    Park, In-Kyoo
    Choi, Gyoo-Seok
    [J]. INFORMATION SYSTEMS, 2015, 48 : 289 - 295
  • [3] MMR: An algorithm for clustering categorical data using Rough Set Theory
    Parmar, Darshit
    Wu, Teresa
    Blackhurst, Jennifer
    [J]. DATA & KNOWLEDGE ENGINEERING, 2007, 63 (03) : 879 - 893
  • [4] Fuzzy rough clustering for categorical data
    Xu, Shuliang
    Liu, Shenglan
    Zhou, Jian
    Feng, Lin
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2019, 10 (11) : 3213 - 3223
  • [5] Fuzzy rough clustering for categorical data
    Shuliang Xu
    Shenglan Liu
    Jian Zhou
    Lin Feng
    [J]. International Journal of Machine Learning and Cybernetics, 2019, 10 : 3213 - 3223
  • [6] Hierarchical clustering algorithm for categorical data using a probabilistic rough set model
    Li, Min
    Deng, Shaobo
    Wang, Lei
    Feng, Shengzhong
    Fan, Jianping
    [J]. KNOWLEDGE-BASED SYSTEMS, 2014, 65 : 60 - 71
  • [7] An Empirical Analysis of Rough Set Categorical Clustering Techniques
    Uddin, Jamal
    Ghazali, Rozaida
    Deris, Mustafa Mat
    [J]. PLOS ONE, 2017, 12 (01):
  • [8] Attribute Selection for Partially Labeled Categorical Data By Rough Set Approach
    Dai, Jianhua
    Hu, Qinghua
    Zhang, Jinghong
    Hu, Hu
    Zheng, Nenggan
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (09) : 2460 - 2471
  • [9] MIGR: A Categorical Data Clustering Algorithm Based on Information Gain in Rough Set Theory
    Raheem, Saddam
    Al Shehabi, Shadi
    Nassief, Amaal Mohi
    [J]. INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2022, 30 (05) : 757 - 771
  • [10] An New Algorithm-based Rough Set for Selecting Clustering Attribute in Categorical Data
    Baroud, Muftah Mohamed Jomah
    Hashim, Siti Zaiton Mohd
    Zainal, Anazida
    Ahnad, Jamilah
    [J]. 2020 6TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING AND COMMUNICATION SYSTEMS (ICACCS), 2020, : 1358 - 1364