Prediction of Childbirth Mortality Using Machine Learning

被引:1
|
作者
Metsker, Oleg [2 ]
Kopanitsa, Georgy [1 ]
Bolgova, Ekaterina [1 ]
机构
[1] ITMO Univ, St Petersburg 192034, Russia
[2] Almazov Natl Med Res Ctr, St Petersburg, Russia
关键词
Childbirth; Machine learning; risk factors; prediction; CLINICAL DECISION-SUPPORT; NEONATAL-MORTALITY; PREGNANCY; MODELS; RISK; MANAGEMENT;
D O I
10.3233/SHTI200623
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Timely identification of risk factors in the early stages of pregnancy, risk management and mitigation, prevention, adherence management can reduce the number of adverse perinatal outcomes and complications for both mother and a child. We have retrospectively analyzed electronic health records from the perinatal Center of the Almazov specialized medical center in Saint-Petersburg, Russia. Correlation analysis was performed using Pearson correlation coefficient to select the most relevant predictors. We used APGAR score as a metrics for the childbirth outcomes. Score of 5 and less was considered as a negative outcome. To analyze the influence of the unstructured anamnesis data on the prediction accuracy we have run two prediction experiments for every classification task: 1. Without unstructured data and 2. With unstructured data. This study presents implementation of predictive models for adverse childbirth events that provides higher precision than state of the art models. This is due to the use of unstructured medical data in addition to the structured dataset that allowed to reach 0.92 precision. Identification of main risk factors using the results of the features importance analysis can support clinicians in early identification of possible complications and planning and execution preventive measures.
引用
收藏
页码:109 / 114
页数:6
相关论文
共 50 条
  • [31] Dynamic prediction of mortality after traumatic brain injury using a machine learning algorithm
    Raj, Rahul
    Wennervirta, Jenni M.
    Tjerkaski, Jonathan
    Luoto, Teemu M.
    Posti, Jussi P.
    Nelson, David W.
    Takala, Riikka
    Bendel, Stepani
    Thelin, Eric P.
    Luostarinen, Teemu
    Korja, Miikka
    [J]. NPJ DIGITAL MEDICINE, 2022, 5 (01)
  • [32] Prediction of all-cause mortality in cardiovascular patients by using machine learning models
    Tsarapatsani, K.
    Pezoulas, V.
    Sakellarios, A.
    Tsakanikas, V.
    Marz, W.
    Kleber, M.
    Michalis, L.
    Fotiadis, D.
    [J]. EUROPEAN HEART JOURNAL, 2022, 43 : 1185 - 1185
  • [33] Early prediction of mortality of septic patients visiting emergency room using machine learning
    Heo, J.
    Heo, Y.
    Moon, D. H.
    Bak, S. H.
    Kim, W. J.
    Han, S.
    Choi, S.
    Kim, D.
    Kim, Y.
    Choi, H.
    [J]. EUROPEAN RESPIRATORY JOURNAL, 2022, 60
  • [34] Automated Mortality Prediction in Critically-ill Patients with Thrombosis using Machine Learning
    Danilatou, V
    Antonakaki, D.
    Tzagkarakis, C.
    Kanterakis, A.
    Katos, V
    Kostoulas, T.
    [J]. 2020 IEEE 20TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2020), 2020, : 247 - 254
  • [35] Machine learning-based mortality prediction in hip fracture patients using biomarkers
    Asrian, George
    Suri, Abhinav
    Rajapakse, Chamith
    [J]. JOURNAL OF ORTHOPAEDIC RESEARCH, 2024, 42 (02) : 395 - 403
  • [36] Dynamic prediction of mortality after traumatic brain injury using a machine learning algorithm
    Rahul Raj
    Jenni M. Wennervirta
    Jonathan Tjerkaski
    Teemu M. Luoto
    Jussi P. Posti
    David W. Nelson
    Riikka Takala
    Stepani Bendel
    Eric P. Thelin
    Teemu Luostarinen
    Miikka Korja
    [J]. npj Digital Medicine, 5
  • [37] A machine learning approach for mortality prediction only using non-invasive parameters
    Guang Zhang
    JiaMeng Xu
    Ming Yu
    Jing Yuan
    Feng Chen
    [J]. Medical & Biological Engineering & Computing, 2020, 58 : 2195 - 2238
  • [38] Improving 1-year mortality prediction in ACS patients using machine learning
    Weichwald, Sebastian
    Candreva, Alessandro
    Burkholz, Rebekka
    Klingenberg, Roland
    Raber, Lorenz
    Heg, Dik
    Manka, Robert
    Gencer, Baris
    Mach, Francois
    Nanchen, David
    Rodondi, Nicolas
    Windecker, Stephan
    Laaksonen, Reijo
    Hazen, Stanley L.
    von Eckardstein, Arnold
    Ruschitzka, Frank
    Luescher, Thomas F.
    Buhmann, Joachim M.
    Matter, Christian M.
    [J]. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE, 2021, 10 (08) : 855 - 865
  • [39] Prediction of Mortality in Geriatric Traumatic Brain Injury Patients Using Machine Learning Algorithms
    Wang, Ruoran
    Zeng, Xihang
    Long, Yujuan
    Zhang, Jing
    Bo, Hong
    He, Min
    Xu, Jianguo
    [J]. BRAIN SCIENCES, 2023, 13 (01)
  • [40] Symptom Prediction and Mortality Risk Calculation for COVID-19 Using Machine Learning
    Jamshidi, Elham
    Rahi, Sahand
    Mansouri, Nahal
    [J]. EUROPEAN RESPIRATORY JOURNAL, 2021, 58