Meander Line Nanoantenna Absorber for Subwavelength Terahertz Detection

被引:20
|
作者
Chen, Yuyao [1 ]
Zhou, Haoran [1 ]
Tan, Xiaochao [1 ]
Jiang, Shun [1 ]
Yang, Ao [1 ]
Li, Junyu [1 ]
Hou, Mingming [1 ]
Guo, Qiushi [2 ]
Wang, Shao-Wei [3 ,4 ]
Liu, Feng [5 ]
Liu, Huan [1 ]
Yi, Fei [1 ,6 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Hubei, Peoples R China
[2] Yale Univ, Dept Elect Engn, New Haven, CT 06511 USA
[3] Chinese Acad Sci, Shanghai Inst Tech Phys, State Key Lab Infrared Phys, Shanghai 200083, Peoples R China
[4] Shanghai Engn Res Ctr Energy Saving Coatings, Shanghai 200083, Peoples R China
[5] Shanghai Normal Univ, Dept Phys, Shanghai 200083, Peoples R China
[6] Huazhong Univ Sci & Technol, Shenzhen R & D Ctr, Wuhan 430074, Hubei, Peoples R China
来源
IEEE PHOTONICS JOURNAL | 2018年 / 10卷 / 04期
基金
中国国家自然科学基金;
关键词
Nano-antennas; plasmonics; metamaterials; MAGNETIC POLARITONS; METAMATERIAL; SURFACE;
D O I
10.1109/JPHOT.2018.2843530
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The detection of terahertz electromagnetic waves is crucial for emerging applications within this frequency band, such as spectroscopy, imaging, and communication. Extending the well-developed uncooled infrared focal plane array technology to terahertz frequency regime would be very attractive, but high absorption in the terahertz region with a subwavelength pixel is necessary. In this paper, we proposed a meander line nanoantenna (MLNA) absorber with a metal-insulator-metal structure for subwavelength terahertz absorption. 89% absorption is achieved at the wavelength of 155 mu m with a 10 mu m pitch size. The MLNA absorber is polarization insensitive and can maintain a high absorption when the incident angle is within 40 degrees. We expect that the proposed MLNA absorber can be integrated with the small pixels of uncooled infrared focal plane array for terahertz detection.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Nanoantenna for bacterial detection
    Kinoshita, Takamasa
    Fukuda, Maho
    Nguyen, Dung Q.
    Ishiki, Kengo
    Nishino, Tomoaki
    Shiigi, Hiroshi
    Nagaoka, Tsutomu
    11TH ASIAN CONFERENCE ON CHEMICAL SENSORS, 2016, 20 : 90 - 92
  • [32] Nonreciprocal absorber of subwavelength metallic gratings
    Zhang, Chunyang
    Wang, Yueke
    Lu, Mengjia
    Yao, Zhifei
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2018, 57 (10)
  • [33] A Subwavelength-Laser-Driven Transmitting Optical Nanoantenna for Wireless Communications
    Abu Arisheh, Amer
    Mikki, Said
    Dib, Nihad
    IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES, 2020, 5 : 144 - 154
  • [34] A Biomedical Sensor for Detection of Cancer Cells Based on Terahertz Metamaterial Absorber
    Banerjee, Sagnik
    Dutta, Purba
    Jha, Amitkumar Vidyakant
    Appasani, Bhargav
    Khan, Mohammad S.
    IEEE SENSORS LETTERS, 2022, 6 (06)
  • [35] A cross-shaped terahertz metamaterial absorber for brain cancer detection
    Bhowmik, W.
    Appasani, B.
    Gorai, A.
    Jha, A. K., V
    De, B. P.
    Samanta, P. K.
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2024, 10 (05):
  • [36] Skin Cancer Detection Using Terahertz Metamaterial Absorber and Machine Learning
    Banerjee, Sagnik
    Khan, Mohammad S.
    Nath, Uddipan
    Mishra, Santosh Kumar
    Appasani, Bhargav
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2025, 53 (02) : 343 - 350
  • [37] Hydrophobic terahertz metamaterial absorber sensor for renal cancer detection application
    Bai, Jinjun
    Shi, Ying
    Liu, Chunxi
    Wang, Shasha
    Xu, Wei
    Chang, Shengjiang
    OPTICS COMMUNICATIONS, 2024, 569
  • [38] Highly Subwavelength, Superdirective Cylindrical Nanoantenna (vol 120, 237401, 2018)
    Arslanagic, Samel
    Ziolkowski, Richard W.
    PHYSICAL REVIEW LETTERS, 2018, 121 (24)
  • [39] Scattering of Circularly Polarized Terahertz Waves on a Graphene Nanoantenna
    刘志坤
    谢亚楠
    耿莉
    潘登科
    宋盼
    Chinese Physics Letters, 2016, (02) : 133 - 136
  • [40] Hybrid Dielectric-Plasmonic Nanoantenna with Multiresonances for Subwavelength Photon Sources
    Dmitriev, Pavel A.
    Lassalle, Emmanuel
    Ding, Lu
    Pan, Zhenying
    Neo, Darren C. J.
    Valuckas, Vytautas
    Paniagua-Dominguez, Ramon
    Yang, Joel K. W.
    Demir, Hilmi Volkan
    Kuznetsov, Arseniy I.
    ACS PHOTONICS, 2023, 10 (03) : 582 - 594