Private locally decodable codes

被引:0
|
作者
Ostrovsky, Rafail [1 ]
Pandey, Omkant [1 ]
Sahai, Amit [1 ]
机构
[1] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider the problem of constructing efficient locally decodable codes in the presence of a computationally bounded adversary. Assuming the existence of one-way functions, we construct efficient locally decodable codes with positive information rate and low (almost optimal) query complexity which can correctly decode any given bit of the message from constant channel error rate p. This compares favorably to our state of knowledge locally-decodable codes without cryptographic assumptions. For all our constructions, the probability for any polynomial-time adversary, that the decoding algorithm incorrectly decodes any bit of the message is negligible in the security parameter.
引用
收藏
页码:387 / +
页数:3
相关论文
共 50 条
  • [31] LOCALLY DECODABLE CODES AND THE FAILURE OF COTYPE FOR PROJECTIVE TENSOR PRODUCTS
    Briet, Jop
    Naor, Assaf
    Regev, Oded
    [J]. ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2012, 19 : 120 - 130
  • [32] 3-Query Locally Decodable Codes of Subexponential Length
    Efremenko, Klim
    [J]. STOC'09: PROCEEDINGS OF THE 2009 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2009, : 39 - 44
  • [33] Locally Decodable and Updatable Non-malleable Codes and Their Applications
    Dachman-Soled, Dana
    Liu, Feng-Hao
    Shi, Elaine
    Zhou, Hong-Sheng
    [J]. JOURNAL OF CRYPTOLOGY, 2020, 33 (01) : 319 - 355
  • [34] Locally Decodable and Updatable Non-malleable Codes and Their Applications
    Dachman-Soled, Dana
    Liu, Feng-Hao
    Shi, Elaine
    Zhou, Hong-Sheng
    [J]. THEORY OF CRYPTOGRAPHY (TCC 2015), PT I, 2015, 9014 : 427 - 450
  • [35] 3-QUERY LOCALLY DECODABLE CODES OF SUBEXPONENTIAL LENGTH
    Efremenko, Klim
    [J]. SIAM JOURNAL ON COMPUTING, 2012, 41 (06) : 1694 - 1703
  • [36] Query-Efficient Locally Decodable Codes of Subexponential Length
    Yeow Meng Chee
    Tao Feng
    San Ling
    Huaxiong Wang
    Liang Feng Zhang
    [J]. computational complexity, 2013, 22 : 159 - 189
  • [37] Towards 3-query locally decodable codes of subexponential length
    Yekhanin, Sergey
    [J]. JOURNAL OF THE ACM, 2008, 55 (01)
  • [38] Towards 3-Query Locally Decodable Codes of Subexponential Length
    Yekhanin, Sergey
    [J]. STOC 07: PROCEEDINGS OF THE 39TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, 2007, : 266 - 274
  • [39] Exponential Lower Bounds for Locally Decodable and Correctable Codes for Insertions and Deletions
    Blocki, Jeremiah
    Cheng, Kuan
    Grigorescu, Elena
    Li, Xin
    Zheng, Yu
    Zhu, Minshen
    [J]. 2021 IEEE 62ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2021), 2022, : 739 - 750
  • [40] An optimal lower bound for 2-query locally decodable linear codes
    Shiowattana, D
    Lokam, SV
    [J]. INFORMATION PROCESSING LETTERS, 2006, 97 (06) : 244 - 250