Feature Correlation-Steered Capsule Network for object detection

被引:18
|
作者
Lin, Zhongqi [1 ,2 ]
Jia, Jingdun [2 ]
Huang, Feng [3 ]
Gao, Wanlin [1 ,2 ]
机构
[1] China Agr Univ, Coll Informat & Elect Engn, Beijing 100083, Peoples R China
[2] Minist Agr & Rural Affairs, Key Lab Agr Informatizat Standardizat, Beijing 100083, Peoples R China
[3] China Agr Univ, Coll Sci, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Capsule Network (CapsNet); Feature correlation; Part-object association; Expectation-maximum routing agreement; Object detection;
D O I
10.1016/j.neunet.2021.12.003
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Despite Convolutional Neural Networks (CNNs) based approaches have been successful in objects detection, they predominantly focus on positioning discriminative regions while overlooking the internal holistic part-whole associations within objects. This would ultimately lead to the neglect of feature relationships between object and its parts as well as among those parts, both of which are significantly helpful for detecting discriminative parts. In this paper, we propose to "look insider the objects "by digging into part-whole feature correlations and take the attempts to leverage those correlations endowed by the Capsule Network (CapsNet) for robust object detection. Actually, highly correlated capsules across adjacent layers share high familiarity, which will be more likely to be routed together. In light of this, we take such correlations between different capsules of the preceding training samples as an awareness to constrain the subsequent candidate voting scope during the routing procedure, and a Feature Correlation-Steered CapsNet (FCS-CapsNet) with Locally-Constrained Expectation-Maximum (EM) Routing Agreement (LCEMRA) is proposed. Different from conventional EM routing, LCEMRA stipulates that only those relevant low-level capsules (parts) meeting the requirement of quantified intra-object cohesiveness can be clustered to make up high-level capsules (objects). In doing so, part-object associations can be dug by transformation weighting matrixes between capsules layers during such "part backtracking'' procedure. LCEMRA enables low-level capsules to selectively gather projections from a non-spatially-fixed set of high-level capsules. Experiments on VOC2007, VOC2012, HKU-IS, DUTS, and COCO show that FCS-CapsNet can achieve promising object detection effects across multiple evaluation metrics, which are on-par with state-of-the-arts. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页码:25 / 41
页数:17
相关论文
共 50 条
  • [41] HYPER FEATURE FUSION PYRAMID NETWORK FOR OBJECT DETECTION
    Huang, Shouzhi
    Li, Xiaoyu
    Jiang, Zhuqing
    Guo, Xiaoqiang
    Men, Aidong
    2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW 2018), 2018,
  • [42] Dynamic Feature Focusing Network for small object detection
    Jing, Rudong
    Zhang, Wei
    Li, Yuzhuo
    Li, Wenlin
    Liu, Yanyan
    INFORMATION PROCESSING & MANAGEMENT, 2024, 61 (06)
  • [43] Feature Aggregation and Propagation Network for Camouflaged Object Detection
    Zhou, Tao
    Zhou, Yi
    Gong, Chen
    Yang, Jian
    Zhang, Yu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 7036 - 7047
  • [44] Extended Feature Pyramid Network for Small Object Detection
    Deng, Chunfang
    Wang, Mengmeng
    Liu, Liang
    Liu, Yong
    Jiang, Yunliang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 1968 - 1979
  • [45] GraphFPN: Graph Feature Pyramid Network for Object Detection
    Zhao, Gangming
    Ge, Weifeng
    Yu, Yizhou
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 2743 - 2752
  • [46] Small object detection using deep feature learning and feature fusion network
    Tong, Kang
    Wu, Yiquan
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 132
  • [47] A Small Object Detection Network Based on Multiple Feature Enhancement and Feature Fusion
    Tan K.
    Ding S.
    Wu S.
    Tian K.
    Ren J.
    Scientific Programming, 2023, 2023
  • [48] Feature flow: In-network feature flow estimation for video object detection
    Jin, Ruibing
    Lin, Guosheng
    Wen, Changyun
    Wang, Jianliang
    Liu, Fayao
    PATTERN RECOGNITION, 2022, 122
  • [49] Hierarchical Focused Feature Pyramid Network for Small Object Detection
    Wang, Siwei
    Chen, Zhiwei
    Ding, Haoyang
    Cao, Liujuan
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT XII, 2024, 14436 : 432 - 444
  • [50] Boosting Feature-Aware Network for Salient Object Detection
    Zheng, Jianwei
    Gu, Yubin
    Feng, Yuchao
    Xu, Jinshan
    Zhang, Meiyu
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT IV, 2022, 13532 : 14 - 26