Preparation of mesoporous microspheres of NiO with high surface area and analysis on their pseudocapacitive behavior

被引:54
|
作者
Abbas, Syed Asad [1 ,2 ]
Jung, Kwang-Deog [1 ,2 ]
机构
[1] Korea Inst Sci & Technol, Ctr Clean Energy & Chem Engn, Hwarangno 14 Gil 5, Seoul 136791, South Korea
[2] Univ Sci & Technol, Clean Energy & Chem Engn, Daejeon, South Korea
关键词
Mesoporous microspheres of NiO; alpha-Ni(OH)(2); Oleylamine method; hydrothermal method; Pseudocapacitor; ELECTROCHEMICAL CAPACITORS; NICKEL-OXIDE; ENERGY-STORAGE; SUPERCAPACITORS; PERFORMANCE; ELECTRODES; NANOPARTICLES; BATTERIES; NETWORKS; ROUTE;
D O I
10.1016/j.electacta.2016.02.054
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Nickel oxide with a high surface area showing high capacitance is reported here. Mesoporous microspheres (MMS) of 250NiO, 300NiO, 350NiO, 400NiO and 500NiO are synthesized by calcining mesoporous alpha-Ni(OH)(2) at 250 degrees C, 300 degrees C, 350 degrees C, 400 degrees C, and 500 degrees C, respectively. The mesoporous a-Ni (OH) 2 was prepared by a hydrothermal method. 250NiO has the highest specific surface area of 295 m(2)/g, and a high specific capacitance of 1,140 F g (1) at a current density of 10 A g (1) from galvanostatic discharge measurements. The cyclic voltammetry, galvanostatic discharge measurement and electrochemical impedance analysis exhibited that the pseudocapacitive behavior is more clarified for NiO prepared at higher calcination temperature. Apparently, the high specific capacitance of 250NiO results from the mesoporous pores and high specific surface area enhancing the transportation of ions during the charging and discharging process to store high energy. The power density and energy density of the 250NiO are 2.5 kW kg (1) and 59 W h kg (1) respectively at the current density of 10 A g (1). (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:145 / 153
页数:9
相关论文
共 50 条
  • [12] Preparation and characterization of thermally stable high surface area mesoporous vanadium oxides
    Xue, Mingwei
    Chen, Hui
    Ge, Jiazhen
    Shen, Jianyi
    MICROPOROUS AND MESOPOROUS MATERIALS, 2010, 131 (1-3) : 37 - 44
  • [13] Preparation of Mesoporous Carbons with High Specific Surface Area and Large Pore Volume
    Choma, Jerzy
    Dziura, Aleksandra
    Jamiola, Dominik
    Marszewski, Michal
    Jaroniec, Mietek
    OCHRONA SRODOWISKA, 2012, 34 (01): : 3 - 7
  • [14] Preparation and characterisation of mesoporous, high-surface-area zirconium(IV) oxide
    Hudson, MJ
    Knowles, JA
    JOURNAL OF MATERIALS CHEMISTRY, 1996, 6 (01) : 89 - 95
  • [15] PREPARATION AND CHARACTERIZATION OF MESOPOROUS, HIGH-SURFACE-AREA ZIRCONIUM(IV) OXIDES
    KNOWLES, JA
    HUDSON, MJ
    JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS, 1995, (20) : 2083 - 2084
  • [16] Preparation of High Surface Area Mesoporous Activated Carbon: Kinetics and Equilibrium Isotherm
    Lim, W. C.
    Srinivasakannan, C.
    Doshi, V.
    SEPARATION SCIENCE AND TECHNOLOGY, 2012, 47 (06) : 886 - 895
  • [17] Preparation of MgO catalytic support in shaped mesoporous high surface area form
    Gulková, D
    Solcová, O
    Zdrazil, M
    MICROPOROUS AND MESOPOROUS MATERIALS, 2004, 76 (1-3) : 137 - 149
  • [18] Mesoporous NiO-CGO obtained by Hard Template as a High Surface Area Anode for IT-SOFC
    Almar, L.
    Andreu, T.
    Morata, A.
    Tarancon, A.
    SOLID OXIDE FUEL CELLS 12 (SOFC XII), 2011, 35 (01): : 1647 - 1654
  • [19] Development of mesoporous TiO2 microspheres with high specific surface area for selective enrichment of phosphopeptides by mass spectrometric analysis
    Tang, Jia
    Yin, Peng
    Lu, Xiaohui
    Qi, Dawei
    Mao, Yu
    Deng, Chunhui
    Yang, Pengyuan
    Zhang, Xiangmin
    JOURNAL OF CHROMATOGRAPHY A, 2010, 1217 (15) : 2197 - 2205
  • [20] Perforated mesoporous NiO nanostructures for an enhanced pseudocapacitive performance with ultra-high rate capability and high energy density
    Kitchamsetti, Narasimharao
    Chikate, Parameshwar R.
    Patil, Ranjit A.
    Ma, Yuan-Ron
    Shirage, Parasharam M.
    Devan, Rupesh S.
    CRYSTENGCOMM, 2019, 21 (46) : 7130 - 7140