Preparation of mesoporous microspheres of NiO with high surface area and analysis on their pseudocapacitive behavior

被引:54
|
作者
Abbas, Syed Asad [1 ,2 ]
Jung, Kwang-Deog [1 ,2 ]
机构
[1] Korea Inst Sci & Technol, Ctr Clean Energy & Chem Engn, Hwarangno 14 Gil 5, Seoul 136791, South Korea
[2] Univ Sci & Technol, Clean Energy & Chem Engn, Daejeon, South Korea
关键词
Mesoporous microspheres of NiO; alpha-Ni(OH)(2); Oleylamine method; hydrothermal method; Pseudocapacitor; ELECTROCHEMICAL CAPACITORS; NICKEL-OXIDE; ENERGY-STORAGE; SUPERCAPACITORS; PERFORMANCE; ELECTRODES; NANOPARTICLES; BATTERIES; NETWORKS; ROUTE;
D O I
10.1016/j.electacta.2016.02.054
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Nickel oxide with a high surface area showing high capacitance is reported here. Mesoporous microspheres (MMS) of 250NiO, 300NiO, 350NiO, 400NiO and 500NiO are synthesized by calcining mesoporous alpha-Ni(OH)(2) at 250 degrees C, 300 degrees C, 350 degrees C, 400 degrees C, and 500 degrees C, respectively. The mesoporous a-Ni (OH) 2 was prepared by a hydrothermal method. 250NiO has the highest specific surface area of 295 m(2)/g, and a high specific capacitance of 1,140 F g (1) at a current density of 10 A g (1) from galvanostatic discharge measurements. The cyclic voltammetry, galvanostatic discharge measurement and electrochemical impedance analysis exhibited that the pseudocapacitive behavior is more clarified for NiO prepared at higher calcination temperature. Apparently, the high specific capacitance of 250NiO results from the mesoporous pores and high specific surface area enhancing the transportation of ions during the charging and discharging process to store high energy. The power density and energy density of the 250NiO are 2.5 kW kg (1) and 59 W h kg (1) respectively at the current density of 10 A g (1). (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:145 / 153
页数:9
相关论文
共 50 条
  • [1] Preparation of Mesoporous NiO with Excellent Pseudocapacitive Behavior
    Chen, Hui
    Xu, Jinling
    Xu, Xiaowen
    Zhang, Qianli
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2013, (07) : 1105 - 1108
  • [2] Preparation of mesoporous silicon dioxide with high specific surface area
    N. B. Kondrashova
    O. G. Vasil’eva
    V. A. Val’tsifer
    S. A. Astaf’eva
    V. N. Strel’nikov
    Russian Journal of Applied Chemistry, 2009, 82 : 1 - 5
  • [3] Preparation of mesoporous high-surface-area activated carbon
    Hu, ZH
    Srinivasan, MP
    Ni, YM
    ADVANCED MATERIALS, 2000, 12 (01) : 62 - +
  • [4] Preparation of Mesoporous Silicon Dioxide with High Specific Surface Area
    Kondrashova, N. B.
    Vasil'eva, O. G.
    Val'tsifer, V. A.
    Astaf'eva, S. A.
    Strel'nikov, V. N.
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2009, 82 (01) : 1 - 5
  • [5] Preparation of high surface area mesoporous melamine formaldehyde resins
    Cui, Huapeng
    Chen, Hui
    Guo, Zhouyang
    Xu, Jun
    Shen, Jianyi
    MICROPOROUS AND MESOPOROUS MATERIALS, 2020, 309 (309)
  • [6] Mesoporous microspheres of pt and Pt/Ru formed by electrodeposition: Characterization of high surface area
    Knutson, Trevor L.
    Bollinger, Matthew L.
    Smyrl, William H.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (02) : F17 - F21
  • [7] Preparation of Copper Oxide with High Surface Area Associated with Mesoporous Silica
    Suh, Myung-Ji
    Ihm, Son-Ki
    TOPICS IN CATALYSIS, 2010, 53 (7-10) : 447 - 454
  • [8] Preparation and characterization of high surface area nanosheet titania with mesoporous structure
    Pavasupree, Sorapong
    Ngamsinlapasathian, Supachai
    Suzuki, Yoshikazu
    Yoshikawa, Susumu
    MATERIALS LETTERS, 2007, 61 (14-15) : 2973 - 2977
  • [9] Preparation of Copper Oxide with High Surface Area Associated with Mesoporous Silica
    Myung-Ji Suh
    Son-Ki Ihm
    Topics in Catalysis, 2010, 53 : 447 - 454
  • [10] Preparation of Magnetic, Luminescent and Mesoporous Hydroxyapatite Nanospindles with High Specific Surface Area
    Guo Haifeng
    Zhou Zhiqiang
    Ye Feng
    Li Guoping
    Zhang Zhiheng
    RARE METAL MATERIALS AND ENGINEERING, 2014, 43 (11) : 2647 - 2651