System Study on Hydrothermal Gasification Combined With a Hybrid Solid Oxide Fuel Cell Gas Turbine

被引:22
|
作者
Toonssen, R. [1 ]
Aravind, P. V. [1 ]
Smit, G. [2 ]
Woudstra, N. [1 ]
Verkooijen, A. H. M. [1 ]
机构
[1] Delft Univ Technol, Fac Mech Marine & Mat Engn, Proc & Energy Dept, Sect Energy Technol, NL-2628 CA Delft, Netherlands
[2] GENSOS VOF, NL-1764 GK Breezand, Netherlands
关键词
Cycle-Tempo; Exergy Analysis; Hydrothermal Biomass Gasification; Modelling; SOFC-GT Hybrid System; SUPERCRITICAL WATER GASIFICATION; BIOMASS GASIFICATION; HYDROGEN-PRODUCTION; NI/GDC ANODES; SOFC-MGT; EFFICIENCIES; PERFORMANCE;
D O I
10.1002/fuce.200900188
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The application of wet biomass in energy conversion systems is challenging, since in most conventional systems the biomass has to be dried. Drying can be very energy intensive especially when the biomass has a moisture content above 50 wt.% on a wet basis. The combination of hydrothermal biomass gasification and a solid oxide fuel cell (SOFC) gas turbine (GT) hybrid system could be an efficient way to convert very wet biomass into electricity. Therefore, thermodynamic evaluation of combined systems with hydrothermal gasification units and SOFC-GT hybrid units has been performed. Three hydrothermal gasification cases have been evaluated; one producing mainly methane, a second one producing a mixture of hydrogen and methane and the last one producing mainly hydrogen. These three gasification systems have been coupled to the same SOFC-GT hybrid system. All the integrated systems have electrical exergy efficiencies around 50%, therefore, the combination of supercritical water gasification and SOFC-GT hybrid systems seems promising. The overall system performance depends for a large part on the liquid gas separation. Further research is required for finding out the optimal separation conditions.
引用
收藏
页码:643 / 653
页数:11
相关论文
共 50 条
  • [31] Thermo-economic optimization of a solid oxide fuel cell, gas turbine hybrid system
    Autissier, N.
    Palazzi, F.
    Marechal, F.
    van Herle, J.
    Favrat, D.
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2007, 4 (02): : 123 - 129
  • [32] Comparative study of fuel types on solid oxide fuel cell-gas turbine hybrid system for electric propulsion aircraft
    Liu, He
    Qin, Jiang
    Xiu, Xinyan
    Ha, Chan
    Dong, Peng
    FUEL, 2023, 347
  • [33] PARAMETRIC ANALYSIS ON A NOVEL HYBRID SYSTEM OF SOLID OXIDE FUEL CELL AND MICRO GAS TURBINE
    Zhang, Wenshu
    Zhang, Sheng
    Weng, Shilie
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2010, VOL 5, PTS A AND B, 2012, : 955 - 961
  • [34] FUEL UTILIZATION EFFECTS ON SYSTEM EFFICIENCY AND SOLID OXIDE FUEL CELL PERFORMANCE IN GAS TURBINE HYBRID SYSTEMS
    Harun, Nor Farida
    Shadle, Lawrence
    Oryshchyn, Danylo
    Tucker, David
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2017, VOL 3, 2017,
  • [35] THERMODYNAMIC PERFORMANCE OF A GAS TURBINE PLANT COMBINED WITH A SOLID OXIDE FUEL CELL
    Haseli, Yousef
    Dincer, Ibrahim
    Naterer, Greg F.
    ES2008: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, VOL 2, 2009, : 23 - 32
  • [36] Networked solid oxide fuel cell stacks combined with a gas turbine cycle
    Selimovic, A
    Palsson, J
    JOURNAL OF POWER SOURCES, 2002, 106 (1-2) : 76 - 82
  • [37] Thermodynamic modeling of a gas turbine cycle combined with a solid oxide fuel cell
    Haseli, Y.
    Dincer, I.
    Naterer, G. F.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (20) : 5811 - 5822
  • [38] Hybrid Solid Oxide Fuel Cell and Micro Gas Turbine for Regional Jets
    Santarelli, M.
    Cabrera, M.
    JOURNAL OF AIRCRAFT, 2011, 48 (04): : 1216 - 1224
  • [39] RGA ANALYSIS OF A SOLID OXIDE FUEL CELL GAS TURBINE HYBRID PLANT
    Tsai, Alex
    Banta, Larry
    Tucker, David
    Gemmen, Randall
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY - 2008, 2008, : 675 - 680
  • [40] Technical analysis of a hybrid solid oxide fuel cell/gas turbine cycle
    Leal, Elisangela Martins
    Bortolaia, Luis Antonio
    Leal Junior, Amauri Menezes
    ENERGY CONVERSION AND MANAGEMENT, 2019, 202