REFERENCE-FREE DESPECKLING OF SYNTHETIC-APERTURE RADAR IMAGES USING A DEEP CONVOLUTIONAL NETWORK

被引:3
|
作者
Davis, T. [1 ]
Jain, V [1 ]
Ley, A. [1 ]
D'Hondt, O. [1 ]
Valade, S. [1 ,2 ,3 ]
Hellwich, O. [1 ]
机构
[1] Tech Univ Berlin, Comp Vis & Remote Sensing, Berlin, Germany
[2] GFZ German Res Ctr Geosci, Potsdam, Germany
[3] Univ Nacl Autonoma Mexico, Inst Geofis, Mexico City, DF, Mexico
关键词
Synthetic-Aperture Radar; Convolutional Neural Networks; Satellite Imaging; Noise2Noise; Despeckling; SAR;
D O I
10.1109/IGARSS39084.2020.9323293
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work proposes a deep learning based method to despeckle SAR images that does not require noise-free reference data. Instead, our method exploits the redundancy between images of the same area at different times to train a residual convolutional neural network in a regression framework to predict speckle-free images. Moreover, thanks to end-to-end training of the network, our approach does not require explicit parameter tuning. Experiments show the relevance of our approach on Sentinel 1 images acquired over volcanic areas. The method is shown to compete well with well-known approaches such as the Lee filter and the more recent SAR-BM3D filter.
引用
收藏
页码:3908 / 3911
页数:4
相关论文
共 50 条
  • [31] Synthetic aperture radar image despeckling based on modified convolution neural network
    Mohanakrishnan, P.
    Suthendran, K.
    Pradeep, Arun
    Yamini, Anish Pon
    APPLIED GEOMATICS, 2024, 16 (01) : 313 - 313
  • [32] Change detection in multitemporal synthetic aperture radar images using dual-channel convolutional neural network
    Liu, Tao
    Li, Ying
    Cao, Ying
    Shen, Qiang
    JOURNAL OF APPLIED REMOTE SENSING, 2017, 11
  • [33] Focus Measure for Synthetic Aperture Imaging Using a Deep Convolutional Network
    Pei, Zhao
    Huang, Li
    Zhang, Yanning
    Ma, Miao
    Peng, Yali
    Yang, Yee-Hong
    IEEE ACCESS, 2019, 7 : 19762 - 19774
  • [34] Crop classification based on phenology information by using time series of optical and synthetic-aperture radar images
    Kordi, Fatemeh
    Yousefi, Hossein
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2022, 27
  • [35] Mapping of Ice Motion in Antarctica Using Synthetic-Aperture Radar Data
    Mouginot, Jeremie
    Scheuchl, Bernd
    Rignot, Eric
    REMOTE SENSING, 2012, 4 (09) : 2753 - 2767
  • [36] Inverse Synthetic Aperture Radar Imaging Using a Fully Convolutional Neural Network
    Hu, Changyu
    Wang, Ling
    Li, Ze
    Zhu, Daiyin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (07) : 1203 - 1207
  • [37] Maximum entropy methods for despeckling and resampling synthetic aperture radar images of rough terrain
    Datcu, M
    Walessa, M
    IMAGE PROCESSING, SIGNAL PROCESSING, AND SYNTHETIC APERTURE RADAR FOR REMOTE SENSING, 1997, 3217 : 76 - 83
  • [38] Two new methods based on contourlet transform for despeckling synthetic aperture radar images
    Kiani, Mohammad
    Ghofrani, Sedigheh
    JOURNAL OF APPLIED REMOTE SENSING, 2014, 8
  • [39] Study of Coniferous Forests Using Multifrequency Polarimetric Synthetic-Aperture Radar
    Kalinkevich, A. A.
    Kutuza, B. G.
    Manakov, V. Yu.
    Plyushchev, V. A.
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2019, 64 (12) : 1339 - 1347
  • [40] Inverse Synthetic Aperture Radar Imaging Using a Deep ADMM Network
    Hu, Changyu
    Li, Ze
    Wang, Ling
    Guo, Jun
    Loffeld, Otmar
    2019 20TH INTERNATIONAL RADAR SYMPOSIUM (IRS), 2019,