REFERENCE-FREE DESPECKLING OF SYNTHETIC-APERTURE RADAR IMAGES USING A DEEP CONVOLUTIONAL NETWORK

被引:3
|
作者
Davis, T. [1 ]
Jain, V [1 ]
Ley, A. [1 ]
D'Hondt, O. [1 ]
Valade, S. [1 ,2 ,3 ]
Hellwich, O. [1 ]
机构
[1] Tech Univ Berlin, Comp Vis & Remote Sensing, Berlin, Germany
[2] GFZ German Res Ctr Geosci, Potsdam, Germany
[3] Univ Nacl Autonoma Mexico, Inst Geofis, Mexico City, DF, Mexico
关键词
Synthetic-Aperture Radar; Convolutional Neural Networks; Satellite Imaging; Noise2Noise; Despeckling; SAR;
D O I
10.1109/IGARSS39084.2020.9323293
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work proposes a deep learning based method to despeckle SAR images that does not require noise-free reference data. Instead, our method exploits the redundancy between images of the same area at different times to train a residual convolutional neural network in a regression framework to predict speckle-free images. Moreover, thanks to end-to-end training of the network, our approach does not require explicit parameter tuning. Experiments show the relevance of our approach on Sentinel 1 images acquired over volcanic areas. The method is shown to compete well with well-known approaches such as the Lee filter and the more recent SAR-BM3D filter.
引用
收藏
页码:3908 / 3911
页数:4
相关论文
共 50 条
  • [1] Deep Multi-Scale Recurrent Network for Synthetic Aperture Radar Images Despeckling
    Zhou, Yuanyuan
    Shi, Jun
    Yang, Xiaqing
    Wang, Chen
    Kumar, Durga
    Wei, Shunjun
    Zhang, Xiaoling
    REMOTE SENSING, 2019, 11 (21)
  • [2] An Optimized Deep Belief Network for Land Cover Classification Using Synthetic-Aperture Radar Images and Landsat Images
    Bhatt, Abhishek
    Thakur, Vandana
    COMPUTER JOURNAL, 2023, 66 (08): : 2043 - 2058
  • [3] Compression of synthetic-aperture radar images
    1600, Springer Verlag (8671):
  • [4] Compression of Synthetic-Aperture Radar Images
    Bielecka, Marzena
    Bielecki, Andrzej
    Wojdanowski, Wojciech
    COMPUTER VISION AND GRAPHICS, ICCVG 2014, 2014, 8671 : 92 - +
  • [5] A New Technique for Segmentation of the Oil Spills From Synthetic-Aperture Radar Images Using Convolutional Neural Network
    Mahmoudi, Fatemeh
    Shokouhi, Shahriar Baradaran
    Akbarizadeh, Gholamreza
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 8834 - 8844
  • [6] DESPECKLING OF SYNTHETIC APERTURE RADAR IMAGES USING SHEARLET TRANSFORM
    Goel, Anshika
    Garg, Amit
    ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2023, 21 (03) : 244 - 256
  • [7] Synthetic aperture radar image despeckling with a residual learning of convolutional neural network
    Zhang, Ming
    Yang, Li-dong
    Yu, Da-hua
    An, Ju-bai
    OPTIK, 2021, 228
  • [8] STATISTICAL INVESTIGATIONS OF THE SYNTHETIC-APERTURE RADAR IMAGES
    TOTSKY, AV
    GORBUNENKO, BF
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 1994, 15 (09) : 1761 - 1774
  • [9] Synthetic aperture radar target recognition via deep attention convolutional network assisted by multiscale residual despeckling network
    Zou, Lin
    Wang, Xi
    Yu, Xuelian
    Ren, Haohao
    Zhou, Yun
    Wang, Xuegang
    JOURNAL OF APPLIED REMOTE SENSING, 2023, 17 (01) : 16502
  • [10] Radiometric slope correction of synthetic-aperture radar images
    Ulander, LMH
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1996, 34 (05): : 1115 - 1122