Neutron monitor generated data distributions in quantum variational Monte Carlo

被引:1
|
作者
Kussainov, A. S. [1 ,2 ]
Pya, N. [3 ]
机构
[1] Al Farabi Kazakh Natl Univ, Phys & Technol Dept, Alma Ata, Kazakhstan
[2] Al Farabi Kazakh Natl Univ, Natl Nanotechnol Lab Open Type, Alma Ata, Kazakhstan
[3] Nazarbayev Univ, Sch Sci & Technol, Dept Math, Astana, Kazakhstan
关键词
D O I
10.1088/1742-6596/738/1/012076
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We have assessed the potential applications of the neutron monitor hardware as random number generator for normal and uniform distributions. The data tables from the acquisition channels with no extreme changes in the signal level were chosen as the retrospective model. The stochastic component was extracted by fitting the raw data with splines and then subtracting the fit. Scaling the extracted data to zero mean and variance of one is sufficient to obtain a stable standard normal random variate. Distributions under consideration pass all available normality tests. Inverse transform sampling is suggested to use as a source of the uniform random numbers. Variational Monte Carlo method for quantum harmonic oscillator was used to test the quality of our random numbers. If the data delivery rate is of importance and the conventional one minute resolution neutron count is insufficient, we could always settle for an efficient seed generator to feed into the faster algorithmic random number generator or create a buffer.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Variational quantum Monte-Carlo method in surface physics
    Schattke, W
    Bahnsen, R
    Redmer, R
    [J]. PROGRESS IN SURFACE SCIENCE, 2003, 72 (5-8) : 87 - 116
  • [42] Approximation of joint PDFs by discrete distributions generated with Monte Carlo methods
    Brandt, Martin
    Polifke, Wolfgang
    Flohr, Peter
    [J]. COMBUSTION THEORY AND MODELLING, 2006, 10 (04) : 535 - 558
  • [43] The Lognormal Distribution and Quantum Monte Carlo data
    Moodley, Mervlyn
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2014, 15 (05) : 1352 - 1367
  • [44] Data analysis for quantum Monte Carlo simulations
    Neuber, DR
    Fischer, RO
    von der Linden, W
    [J]. BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2004, 735 : 245 - 251
  • [45] Monte Carlo analysis of neutron diffuse scattering data
    Goossens, D. J.
    Heerdegen, A. P.
    Welberry, T. R.
    Gutmann, M. J.
    [J]. PHYSICA B-CONDENSED MATTER, 2006, 385-86 (1352-1354) : 1352 - 1354
  • [46] The Plateau de Bure Neutron Monitor: Design, Operation and Monte Carlo Simulation
    Semikh, S.
    Serre, S.
    Autran, J. L.
    Munteanu, D.
    Sauze, S.
    Yakushev, E.
    Rozov, S.
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2012, 59 (02) : 303 - 313
  • [47] Quantum Monte Carlo calculation of the equation of state of neutron matter
    Gandolfi, S.
    Illarionov, A. Yu.
    Schmidt, K. E.
    Pederiva, F.
    Fantoni, S.
    [J]. PHYSICAL REVIEW C, 2009, 79 (05):
  • [48] Variational Consensus Monte Carlo
    Rabinovich, Maxim
    Angelino, Elaine
    Jordan, Michael I.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [49] Variational Monte Carlo in solids
    Fahy, S
    [J]. QUANTUM MONTE CARLO METHODS IN PHYSICS AND CHEMISTRY, 1999, 525 : 101 - 127
  • [50] Variational Sequential Monte Carlo
    Naesseth, Christian A.
    Linderman, Scott W.
    Ranganath, Rajesh
    Blei, David M.
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84