Topic based language models for ad hoc information retrieval

被引:0
|
作者
Azzopardi, L [1 ]
Girolami, M [1 ]
van Rijsbergen, CJ [1 ]
机构
[1] Univ Paisley, Sch ICT, Paisley PA1 2BE, Renfrew, Scotland
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a topic based approach to language modelling for ad-hoc Information Retrieval (IR). Many smoothed estimators used for the multinomial query model in IR rely upon the estimated background collection probabilities. In this paper, we propose a topic based language modelling approach, that uses a more informative prior based on the topical content of a document. In our experiments, the proposed model provides comparable IR performance to the standard models, but when combined in a two stage language model, it outperforms all other estimated models.
引用
下载
收藏
页码:3281 / 3286
页数:6
相关论文
共 50 条
  • [31] Positional Language Models for Information Retrieval
    Lv, Yuanhua
    Zhai, ChengXiang
    PROCEEDINGS 32ND ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2009, : 299 - 306
  • [32] Statistical Language Models for Information Retrieval
    Gaussier, Eric
    COMPUTATIONAL LINGUISTICS, 2010, 36 (02) : 279 - 281
  • [33] Analysis of Retrieval Models for Cross Language Information Retrieval
    Ujjwal, Dasu
    Rastogi, Prakhar
    Siddhartha, Siril
    PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND CONTROL (ISCO'16), 2016,
  • [34] Personalization Information Retrieval Based on Topic Directory
    Yu, Yangxin
    Zhang, Yizhou
    ADVANCES IN MANUFACTURING SCIENCE AND ENGINEERING, PTS 1-4, 2013, 712-715 : 2659 - +
  • [35] Wikiformer: Pre -training with Structured Information of Wikipedia for Ad -Hoc Retrieval
    Su, Weihang
    Ai, Qingyao
    Li, Xiangsheng
    Chen, Jia
    Liu, Yiqun
    Wu, Xiaolong
    Hou, Shengluan
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 17, 2024, : 19026 - 19034
  • [36] Neural Ad-Hoc Retrieval Meets Open Information Extraction
    Vo, Duc-Thuan
    Zarrinkalam, Fattane
    Pham, Ba
    Arabzadeh, Negar
    Salamat, Sara
    Bagheri, Ebrahim
    ADVANCES IN INFORMATION RETRIEVAL, ECIR 2023, PT II, 2023, 13981 : 655 - 663
  • [37] Fusion of Retrieval Models at CLEF 2008 Ad Hoc Persian Track
    Aghazade, Zahra
    Dehghani, Nazanin
    Farzinvash, Leili
    Rahimi, Razieh
    AleAhmad, Abolfazl
    Amiri, Hadi
    Oroumchian, Farhad
    EVALUATING SYSTEMS FOR MULTILINGUAL AND MULTIMODAL INFORMATION ACCESS, 2009, 5706 : 97 - +
  • [38] LDA-based document models for cross language information retrieval
    Xu, K. (xukan@dlut.edu.cn), 1600, Binary Information Press, P.O. Box 162, Bethel, CT 06801-0162, United States (09):
  • [39] Sentence retrieval with a topic-based language model
    National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100080, China
    Jisuanji Yanjiu yu Fazhan, 2007, 2 (288-295):
  • [40] Term feedback for information retrieval with language models
    Dept. of Computer Science, University of Illinois, Urbana-Champaign
    不详
    Proc. Annu. Int. ACM SIGIR Conf. Res. Dev. Inf. Retr., 2007, (263-270):