Lead-free multiferroic ceramics consisting of (1-x) (80Bi(0.5)Na(0.5)TiO(3)-20Bi(0.5)K(0.5)TiO(3)) (BNT-BKT)- xNi(0.8)Zn(0.2)Fe(2)O(4) (NZFO) (x = 0, 0.15, 0.25, 0.35, and 0.45) were synthesized by the in situ sol-gel method. The structural, ferroelectric, piezoelectric, ferromagnetic, and magnetoelectric (ME) properties were measured as a function of the NZFO content x. The results showed that the coexistence of BNT-BKT and NZFO phases and the presence of the morphotropic phase boundary in the BNT-BKT phase with a high piezoelectric coefficient d33 (similar to 131 pC/N) were confirmed. The composites exhibited a homogeneous microstructure and well-combined interfaces between the magnetostrictive and piezoelectric phases, as well as an improved ME response. The largest ME voltage coefficient (alpha(ME)) of 42.41 mV/cm Oe was achieved for the 0.65(BNT-BKT)-0.35NZFO composite, which is in fact the highest one reported so far for lead-free particulate ME composites fabricated via in situ processing. Published by AIP Publishing.