Negative discrete spectrum of perturbed multivortex Aharonov-Bohm Hamiltonians

被引:27
|
作者
Melgaard, M [1 ]
Ouhabaz, EM
Rozenblum, G
机构
[1] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
[2] Univ Bordeaux 1, Lab Bordelais Anal & Geometrie, F-33405 Talence, France
[3] Chalmers Univ Technol, Dept Math, S-41296 Gothenburg, Sweden
[4] Univ Gothenburg, S-41296 Gothenburg, Sweden
来源
ANNALES HENRI POINCARE | 2004年 / 5卷 / 05期
关键词
D O I
10.1007/s00023-004-0187-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The diamagnetic inequality is established for the Schrodinger operator H-0((d)) in L-2 (R-d), d=2, 3, describing a particle moving in a magnetic field generated by finitely or infinitely many Aharonov-Bohm solenoids located at the points of a discrete set in R-2, e.g., a lattice. This fact is used to prove the Lieb-Thirring inequality as well as CLR-type eigenvalue estimates for the perturbed Schrodinger operator H-0((d))-V, using new Hardy type inequalities. Large coupling constant eigenvalue asymptotic formulas for the perturbed operators are also proved.
引用
收藏
页码:979 / 1012
页数:34
相关论文
共 50 条