Negative discrete spectrum of perturbed multivortex Aharonov-Bohm Hamiltonians

被引:27
|
作者
Melgaard, M [1 ]
Ouhabaz, EM
Rozenblum, G
机构
[1] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
[2] Univ Bordeaux 1, Lab Bordelais Anal & Geometrie, F-33405 Talence, France
[3] Chalmers Univ Technol, Dept Math, S-41296 Gothenburg, Sweden
[4] Univ Gothenburg, S-41296 Gothenburg, Sweden
来源
ANNALES HENRI POINCARE | 2004年 / 5卷 / 05期
关键词
D O I
10.1007/s00023-004-0187-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The diamagnetic inequality is established for the Schrodinger operator H-0((d)) in L-2 (R-d), d=2, 3, describing a particle moving in a magnetic field generated by finitely or infinitely many Aharonov-Bohm solenoids located at the points of a discrete set in R-2, e.g., a lattice. This fact is used to prove the Lieb-Thirring inequality as well as CLR-type eigenvalue estimates for the perturbed Schrodinger operator H-0((d))-V, using new Hardy type inequalities. Large coupling constant eigenvalue asymptotic formulas for the perturbed operators are also proved.
引用
收藏
页码:979 / 1012
页数:34
相关论文
共 50 条
  • [1] Negative Discrete Spectrum of Perturbed Multivortex Aharonov-Bohm Hamiltonians
    M. Melgaard
    E.-M. Ouhabaz
    G. Rozenblum
    Annales Henri Poincaré, 2004, 5 : 979 - 1012
  • [2] Negative discrete spectrum of perturbed multivortex Aharonov-Bohm Hamiltonians (vol 5, pg 979, 2004)
    Melgaard, M
    Ouhabaz, EM
    Rozenblum, G
    ANNALES HENRI POINCARE, 2005, 6 (02): : 397 - 398
  • [3] Erratum to “Negative Discrete Spectrum of Perturbed Multivortex Aharonov-Bohm Hamiltonians” Ann. Henri Poincaré, 5 (2004) 979–1012
    M. Melgaard
    E.-M. Ouhabaz
    G. Rozenblum
    Annales Henri Poincaré, 2005, 6 : 397 - 398
  • [4] Pauli Hamiltonians with an Aharonov-Bohm flux
    Borrelli, William
    Correggi, Michele
    Fermi, Davide
    JOURNAL OF SPECTRAL THEORY, 2024, 14 (03) : 1147 - 1193
  • [5] PERIODIC SCHRODINGER OPERATORS AND AHARONOV-BOHM HAMILTONIANS
    Helffer, B.
    Hoffmann-Ostenhof, T.
    Nadirashvili, N.
    MOSCOW MATHEMATICAL JOURNAL, 2003, 3 (01) : 45 - 61
  • [6] Aharonov-Bohm Hamiltonians, isospectrality and minimal partitions
    Bonnaillie-Noel, V.
    Helffer, B.
    Hoffmann-Ostenhof, T.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (18)
  • [7] Corrigendum to "Pauli Hamiltonians with an Aharonov-Bohm flux"
    Borrelli, William
    Correggi, Michele
    Fermi, Davide
    JOURNAL OF SPECTRAL THEORY, 2025, 15 (01) : 479 - 486
  • [8] CONDUCTANCE OF AHARONOV-BOHM RINGS - FROM THE DISCRETE TO THE CONTINUOUS-SPECTRUM LIMIT
    KAMENEV, A
    REULET, B
    BOUCHIAT, H
    GEFEN, Y
    EUROPHYSICS LETTERS, 1994, 28 (06): : 391 - 396
  • [9] AHARONOV-BOHM EFFECTS
    WASHBURN, S
    PHYSICS TODAY, 1986, 39 (05) : 15 - &
  • [10] ON THE AHARONOV-BOHM SCATTERING
    LIANG, JQ
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1986, 92 (02): : 167 - 176