GLOBALLY OPTIMAL PARAMETER ESTIMATES FOR NONLINEAR DIFFUSIONS

被引:2
|
作者
Mijatovic, Aleksandar [1 ]
Schneider, Paul [2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Univ Warwick, Warwick Business Sch, Finance Grp, Coventry CV4 7AL, W Midlands, England
来源
ANNALS OF STATISTICS | 2010年 / 38卷 / 01期
关键词
Nonlinear diffusion; maximum likelihood; EM algorithm; estimation; global optimization; MAXIMUM-LIKELIHOOD-ESTIMATION; STOCHASTIC DIFFERENTIAL-EQUATIONS; CLOSED-FORM APPROXIMATION; SIMULATED LIKELIHOOD; NUMERICAL TECHNIQUES; MODELS; TIME; INFERENCE; VOLATILITY; ALGORITHM;
D O I
10.1214/09-AOS710
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper studies an approximation method for the log-likelihood function of a nonlinear diffusion process using the bridge of the diffusion. The main result (Theorem 1) shows that this approximation converges uniformly to the unknown likelihood function and can therefore be used efficiently with any algorithm for sampling from the law of the bridge. We also introduce an expected maximum likelihood (EML) algorithm for inferring the parameters of discretely observed diffusion processes. The approach is applicable to a subclass of nonlinear SDEs with constant volatility and drift that is linear in the model parameters. In this setting, globally optimal parameters are obtained in a single step by solving a linear system. Simulation Studies to test the EML algorithm show that it performs well when compared with algorithms based on the exact maximum likelihood as well its closed-form likelihood expansions.
引用
收藏
页码:215 / 245
页数:31
相关论文
共 50 条
  • [41] OPTIMAL CONTROL FOR DIFFUSIONS ON GRAPHS
    Florescu, Laura
    Peres, Yuval
    Racz, Miklos Z.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (04) : 2941 - 2972
  • [42] Parameter Estimation for Observed Diffusions in Manifolds
    Ng, S. K.
    Caines, P. E.
    Chen, H. F.
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 1984, 1 (02) : 129 - 140
  • [43] LAGRANGE LEMMA AND THE OPTIMAL-CONTROL OF DIFFUSIONS .2. NONLINEAR LAGRANGE FUNCTIONALS
    KOSMOL, P
    PAVON, M
    SYSTEMS & CONTROL LETTERS, 1995, 24 (03) : 215 - 221
  • [44] THE OPTIMAL-CONTROL OF DIFFUSIONS
    ELLIOTT, RJ
    APPLIED MATHEMATICS AND OPTIMIZATION, 1990, 22 (03): : 229 - 240
  • [45] An optimal Skorokhod embedding for diffusions
    Cox, AMG
    Hobson, DG
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2004, 111 (01) : 17 - 39
  • [46] On optimal stopping of multidimensional diffusions
    Christensen, Soeren
    Crocce, Fabian
    Mordecki, Ernesto
    Salminen, Paavo
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (07) : 2561 - 2581
  • [47] Nonlinear diffusions in topology optimization
    Wang, MY
    Zhou, S
    Ding, H
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2004, 28 (04) : 262 - 276
  • [48] Globally Optimal Multisensor Distributed Random Parameter Matrices Kalman Filtering Fusion with Applications
    Luo, Yingting
    Zhu, Yunmin
    Luo, Dandan
    Zhou, Jie
    Song, Enbin
    Wang, Donghua
    SENSORS, 2008, 8 (12) : 8086 - 8103
  • [49] Globally optimal bounding ellipsoid algorithm for parameter estimation using artificial neural networks
    Sun, XF
    Fan, YZ
    Zhang, FZ
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2000, 31 (01) : 47 - 53
  • [50] Latent semantic mapping: Dimensionality reduction via globally optimal continuous parameter modeling
    Bellegarda, JR
    2005 IEEE WORKSHOP ON AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING (ASRU), 2005, : 127 - 132