Identification of an optimal cutting edge microgeometry for Complementary Machining

被引:6
|
作者
Zanger, Frederik [1 ]
Gerstenmeyer, Michael [1 ]
Weule, Hartmut [1 ]
机构
[1] Karlsruhe Inst Technol, Wbk Insitute Prod Sci, Kaiserstr 12, D-76131 Karlsruhe, Germany
关键词
Surface modification; Cutting edge; Complementary Machining; MICROSTRUCTURAL CHANGES; ANALYTICAL PREDICTION; SURFACE MODIFICATION; WEAR; SIMULATION; BEHAVIORS; FRICTION; ALLOY; LAYER; STEEL;
D O I
10.1016/j.cirp.2017.04.026
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The process strategy Complementary Machining combines machining and surface modification, resulting in optimal workpiece properties like fatigue strength. Right after machining the cutting tool is used reversely acting as a tool for a mechanical surface modification. The challenge of designing a cutting edge microgeometry that withstands the load spectrum and induces optimal surface layer states during Complementary Machining is solvable by modeling the resulting surface layer using FEM-simulation. Using the simulation-based analyses a deep process understanding is accomplished enabling further optimization of surface integrity (e.g. grain refinement) which is proven by measurements. (C) 2017 Published by Elsevier Ltd on behalf of CIRP.
引用
收藏
页码:81 / 84
页数:4
相关论文
共 50 条
  • [31] An analysis of cutting-edge curves and machining performance in the Inconel 718 machining process
    Tsai, YC
    Hsieh, JM
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2005, 25 (3-4): : 248 - 261
  • [32] DETERMINATION OF THE OPTIMAL CUTTING PARAMETERS FOR MACHINING TECHNICAL PLASTICS
    Mosorinski, Predrag
    Prvulovic, Slavica
    Josimovic, Ljubisa
    MATERIALI IN TEHNOLOGIJE, 2020, 54 (01): : 11 - 15
  • [33] An analysis of cutting-edge curves and machining performance in the Inconel 718 machining process
    Y.C. Tsai
    J.M. Hsieh
    The International Journal of Advanced Manufacturing Technology, 2005, 25 : 248 - 261
  • [34] Reamers cutting edge preparation for improvement the GGG 40 machining
    Voina, Ioan-Dora
    Sattel, Stefan
    Contiu, Glad
    Faur, Adrian
    Luca, Bogdan
    22ND INTERNATIONAL CONFERENCE ON INNOVATIVE MANUFACTURING ENGINEERING AND ENERGY - IMANE&E 2018, 2018, 178
  • [35] Effects of cutting edge radius in vibration assisted micro machining
    Arefin, Shamsul
    Zhang, XinQuan
    Neo, Dennis Wee Keong
    Kumar, A. Senthil
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2021, 208
  • [36] Cutting edge radius effects on diamond coated cutting tools: From deposition to machining
    Hu, Jianwen
    Chou, Y. Kevin
    Thompson, Raymond G.
    PROCEEDINGS OF THE ASME INTERNATIONAL CONFERENCE ON MANUFACTURING SCIENCE AND ENGINEERING - 2007, 2007, : 959 - 966
  • [37] Advantages of picosecond laser machining for cutting-edge technologies
    Moorhouse, C.
    LASERS IN MANUFACTURING (LIM 2013), 2013, 41 : 374 - 381
  • [38] America's Cutting Edge CNC machining and metrology training
    Schmitz T.
    Cornelius A.
    Dvorak J.
    Nazario J.
    Betters E.
    Corson G.
    Smith S.
    Blue C.
    Harmon J.
    Morrison M.
    Blevins T.
    Hopkins J.
    Manufacturing Letters, 2022, 33 : 927 - 934
  • [39] Modelling of the combined microstructural and cutting edge effects in ultraprecision machining
    Rahman, M. A.
    Woon, K. S.
    Venkatesh, V. C.
    Rahman, M.
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2018, 67 (01) : 129 - 132
  • [40] Machining curvilinear sections by means of cutting plates with a linear edge
    Isaev A.V.
    Grechishnikov V.A.
    Russian Engineering Research, 2010, 30 (04) : 413 - 417