General overview on the merits of multimodal neuroimaging data fusion

被引:120
|
作者
Uludag, Kamil [1 ]
Roebroeck, Alard [1 ]
机构
[1] Maastricht Univ, Fac Psychol & Neurosci, Maastricht Brain Imaging Ctr, Dept Cognit Neurosci, NL-6200 MD Maastricht, Netherlands
关键词
SIMULTANEOUS EEG-FMRI; HUMAN BRAIN; MULTIVARIATE METHODS; HEMODYNAMIC SIGNALS; PHYSIOLOGICAL NOISE; OXYGEN-METABOLISM; STEADY-STATE; BOLD-FMRI; IN-VIVO; PET;
D O I
10.1016/j.neuroimage.2014.05.018
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Multimodal neuroimaging has become a mainstay of basic and cognitive neuroscience in humans and animals, despite challenges to consider when acquiring and combining non-redundant imaging data. Multimodal data integration can yield important insights into brain processes and structures in addition to spatiotemporal resolution complementarity, including: a comprehensive physiological view on brain processes and structures, quantification, generalization and normalization, and availability of biomarkers. In this review, we discuss data acquisition and fusion in multimodal neuroimaging in the context of each of these potential merits. However, limitations - due to differences in the neuronal and structural underpinnings of each method - have to be taken into account when modeling and interpreting multimodal data using generative models. We conclude that when these challenges are adequately met, multimodal data fusion can create substantial added value for neuroscience applications making it an indispensable approach for studying the brain. (C) 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
引用
收藏
页码:3 / 10
页数:8
相关论文
共 50 条
  • [1] Advances in multimodal data fusion in neuroimaging: Overview, challenges, and novel orientation
    Zhang, Yu-Dong
    Dong, Zhengchao
    Wang, Shui-Hua
    Yu, Xiang
    Yao, Xujing
    Zhou, Qinghua
    Hu, Hua
    Li, Min
    Jimenez-Mesa, Carmen
    Ramirez, Javier
    Martinez, Francisco J.
    Gorriz, Juan Manuel
    INFORMATION FUSION, 2020, 64 (149-187) : 149 - 187
  • [2] An Overview of Multimodal Neuroimaging Using Nanoprobes
    Sridhar, Sriram
    Mishra, Sachin
    Gulyas, Miklos
    Padmanabhan, Parasuraman
    Gulyas, Balazs
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2017, 18 (02)
  • [3] A multimodal vision transformer for interpretable fusion of functional and structural neuroimaging data
    Bi, Yuda
    Abrol, Anees
    Fu, Zening
    Calhoun, Vince D.
    HUMAN BRAIN MAPPING, 2024, 45 (17)
  • [4] An overview of methods and techniques in multimodal data fusion with application to healthcare
    Chaabene, Siwar
    Boudaya, Amal
    Bouaziz, Bassem
    Chaari, Lotfi
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2025,
  • [5] Chromatic fusion: Generative multimodal neuroimaging data fusion provides multi-informed insights into schizophrenia
    Geenjaar, Eloy P. T.
    Lewis, Noah L.
    Fedorov, Alex
    Wu, Lei
    Ford, Judith M.
    Preda, Adrian
    Plis, Sergey M.
    Calhoun, Vince D.
    HUMAN BRAIN MAPPING, 2023, 44 (17) : 5828 - 5845
  • [6] A statistically motivated framework for simulation of stochastic data fusion models applied to multimodal neuroimaging
    Silva, Rogers F.
    Plis, Sergey M.
    Adali, Tuelay
    Calhoun, Vince D.
    NEUROIMAGE, 2014, 102 : 92 - 117
  • [7] Multimodal Data Fusion
    Adali, Tuelay
    Jutten, Christian
    Hansen, Lars Kai
    PROCEEDINGS OF THE IEEE, 2015, 103 (09) : 1445 - 1448
  • [8] Deep learning based multimodal biomedical data fusion: An overview and comparative review
    Duan, Junwei
    Xiong, Jiaqi
    Li, Yinghui
    Ding, Weiping
    INFORMATION FUSION, 2024, 112
  • [9] Fusion Approaches to Predict Post-stroke Aphasia Severity from Multimodal Neuroimaging Data
    Chennuri, Saurav
    Lai, Sha
    Billot, Anne
    Varkanitsa, Maria
    Braun, Emily J.
    Kiran, Swathi
    Venkataraman, Archana
    Konrad, Janusz
    Ishwar, Prakash
    Betke, Margrit
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 2636 - 2645
  • [10] Multimodal neuroimaging data integration and pathway analysis
    Zhao, Yi
    Li, Lexin
    Caffo, Brian S.
    BIOMETRICS, 2021, 77 (03) : 879 - 889