Resonance Raman Probes for Organelle-Specific Labeling in Live Cells

被引:42
|
作者
Kuzmin, Andrey N. [1 ]
Pliss, Artem [1 ]
Lim, Chang-Keun [1 ,2 ]
Heo, Jeongyun [1 ]
Kim, Sehoon [1 ,2 ]
Rzhevskii, Alexander [3 ]
Gu, Bobo [1 ,4 ]
Yong, Ken-Tye [5 ]
Wen, Shangchun [4 ]
Prasad, Paras N. [1 ]
机构
[1] Univ Buffalo, State Univ New York, Inst Lasers Photon & Biophoton, Buffalo, NY 14260 USA
[2] Korea Inst Sci & Technol, Ctr Theragnosis, Seoul 136791, South Korea
[3] Thermo Fisher Sci, Waltham, MA 02451 USA
[4] Hunan Univ, Sch Phys & Elect, Minist Educ, Key Lab Micro Nanooptoelect Devices, Changsha 410082, Hunan, Peoples R China
[5] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
基金
中国国家自然科学基金;
关键词
SPECTROSCOPY; SERS; DNA; TRANSFORMATIONS; MICROSCOPY;
D O I
10.1038/srep28483
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Raman microspectroscopy provides for high-resolution non-invasive molecular analysis of biological samples and has a breakthrough potential for dissection of cellular molecular composition at a single organelle level. However, the potential of Raman microspectroscopy can be fully realized only when novel types of molecular probes distinguishable in the Raman spectroscopy modality are developed for labeling of specific cellular domains to guide spectrochemical spatial imaging. Here we report on the design of a next generation Raman probe, based on BlackBerry Quencher 650 compound, which provides unprecedentedly high signal intensity through the Resonance Raman (RR) enhancement mechanism. Remarkably, RR enhancement occurs with low-toxic red light, which is close to maximum transparency in the biological optical window. The utility of proposed RR probes was validated for targeting lysosomes in live cultured cells, which enabled identification and subsequent monitoring of dynamic changes in this organelle by Raman imaging.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] ORGANELLE-SPECIFIC TUBULIN HETEROGENEITY IN TRYPANOSOMATIDS
    RUSSELL, D
    JOURNAL OF PROTOZOOLOGY, 1984, 31 (04): : A58 - A58
  • [22] In situ generation of photoactivatable aggregation-induced emission probes for organelle-specific imaging
    Li, Shiwu
    Ling, Xia
    Lin, Yuhan
    Qin, Anjun
    Gao, Meng
    Tang, Ben Zhong
    CHEMICAL SCIENCE, 2018, 9 (26) : 5730 - 5735
  • [23] Nanopreparations for organelle-specific delivery in cancer
    Biswas, Swati
    Torchilin, Vladimir P.
    ADVANCED DRUG DELIVERY REVIEWS, 2014, 66 : 26 - 41
  • [24] ORGANELLE-SPECIFIC METABOLISM OF PROTEINS AND LIPIDS IN ANIMAL-CELLS
    URADE, R
    NIPPON NOGEIKAGAKU KAISHI-JOURNAL OF THE JAPAN SOCIETY FOR BIOSCIENCE BIOTECHNOLOGY AND AGROCHEMISTRY, 1993, 67 (12): : 1681 - 1686
  • [25] Organelle-specific cochaperonins in apicomplexan parasites
    Sato, S
    Wilson, RJM
    MOLECULAR AND BIOCHEMICAL PARASITOLOGY, 2005, 141 (02) : 133 - 143
  • [26] Organelle-specific initiation of cell death
    Lorenzo Galluzzi
    José Manuel Bravo-San Pedro
    Guido Kroemer
    Nature Cell Biology, 2014, 16 : 728 - 736
  • [27] Organelle-specific initiation of cell death
    Galluzzi, Lorenzo
    Bravo-San Pedro, Jose Manuel
    Kroemer, Guido
    NATURE CELL BIOLOGY, 2014, 16 (08) : 728 - 736
  • [28] Modular Design of Poly(norbornenes) for Organelle-Specific Imaging in Tumor Cells
    Feng, Ke
    Xie, Nan
    Chen, Bin
    Tung, Chen-Ho
    Wu, Li-Zhu
    BIOMACROMOLECULES, 2016, 17 (02) : 538 - 545
  • [29] An organelle-specific photoactivation and dual-isotope labeling strategy reveals phosphatidylethanolamine metabolic flux
    Simon, Clemence
    Asaro, Antonino
    Feng, Suihan
    Riezman, Howard
    CHEMICAL SCIENCE, 2023, 14 (07) : 1687 - 1695
  • [30] Identification of an organelle-specific myosin V receptor
    Catlett, NL
    Tang, FS
    Ishikawa, K
    Novak, J
    Nau, JJ
    Duex, J
    Weisman, L
    MOLECULAR BIOLOGY OF THE CELL, 2001, 12 : 3A - 3A