共 46 条
Palaeoceanographic controls on spatial redox distribution over the Yangtze Platform during the Ediacaran-Cambrian transition
被引:88
|作者:
Och, Lawrence M.
[1
]
Cremonese, Lorenzo
[1
]
Shields-Zhou, Graham A.
[1
,2
]
Poulton, Simon W.
[3
]
Struck, Ulrich
[4
]
Ling, Hongfei
[5
]
Li, Da
[5
]
Chen, Xi
[5
]
Manning, Christina
[6
]
Thirlwall, Matthew
[6
]
Strauss, Harald
[7
]
Zhu, Maoyan
[2
]
机构:
[1] UCL, Dept Earth Sci, Gower St, London WC1E 6BT, England
[2] Chinese Acad Sci, State Key Lab Palaeobiol & Stratig, Nanjing Inst Geol & Palaeontol, Nanjing 21008, Jiangsu, Peoples R China
[3] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England
[4] Leibniz Inst Evolut & Biodiversitatsforsch, Museum Naturkunde, D-10115 Berlin, Germany
[5] Nanjing Univ, Dept Earth Sci, State Key Lab Mineral Deposits Res, Nanjing 210093, Jiangsu, Peoples R China
[6] Univ London, Dept Earth Sci, Egham TW20 0EX, Surrey, England
[7] Univ Munster, Inst Geol & Paleontol, D-48149 Munster, Germany
关键词:
Cambrian;
Ediacaran;
iron speciation;
Neoproterozoic;
nitrogen isotopes;
redox-sensitive trace-metals;
sulphide isotopes;
NEOPROTEROZOIC DOUSHANTUO FORMATION;
PROTEROZOIC OCEAN CHEMISTRY;
ORGANIC-CARBON ISOTOPE;
U-PB AGES;
SOUTH CHINA;
BLACK SHALES;
XIAOTAN SECTION;
FERRUGINOUS CONDITIONS;
BACTERIAL REDUCTION;
ATMOSPHERIC OXYGEN;
D O I:
10.1111/sed.12220
中图分类号:
P5 [地质学];
学科分类号:
0709 ;
081803 ;
摘要:
The Ediacaran-Cambrian interval was an eventful transitional period, when dynamic interactions between the biosphere and its physical environment allowed the Earth System to cross into a new state, characterized by the presence of metazoans, more equable climates and more expansive oxygenation of the oceans. Due to the retreat of widespread sulphidic conditions, redox-sensitive trace-metals could accumulate to a greater extent in black shales' deposited in localized anoxic/euxinic environments, such as highly productive ocean margins. This study investigates the concentrations of the redox-sensitive trace-metals molybdenum and vanadium in organic-rich sedimentary rocks from seven sections of the Yangtze Platform, slope and basin. Iron speciation analyses were carried out in order to distinguish oxic, anoxic-ferruginous and anoxic-sulphidic settings, while sulphur and nitrogen isotope ratios were measured to gain insight into sulphate and nitrate availability, respectively, in the context of changing redox conditions. The data herein demonstrate an overall increase in redox-sensitive trace-metal contents in black shales across the Ediacaran-Cambrian transition, but with marked temporal and spatial variability. Euxinia is evident in South China before 551Ma in the Ediacaran, and again in the early Cambrian. However, some time-equivalent sections are not enriched in redox-sensitive trace-metals, and also exhibit contrasting S-isotope and N-isotope systematics. A more complex configuration of the Yangtze Platform, for example with vast intra-shelf basins, together with changing (generally rising) eustatic sea-level may account for this variability. In this regard, it is proposed that a mid-depth sulphidic wedge, caused by nutrient upwelling over the south-east platform margins, migrated over time (but generally landward), leading to spatially variable redox conditions determined by sea-level, currents and bathymetric constraints. The changing extents of anoxia and euxinia appear to have limited the distribution of emerging Ediacaran and Cambrian ecosystems.
引用
收藏
页码:378 / 410
页数:33
相关论文