Modeling human infertility with pluripotent stem cells

被引:23
|
作者
Chen, Di [1 ,3 ,5 ]
Gell, Joanna J. [2 ,3 ,4 ]
Tao, Yu [1 ,3 ,5 ]
Sosa, Enrique [1 ,3 ,5 ]
Clark, Amander T. [1 ,3 ,5 ]
机构
[1] Dept Mol Cell & Dev Biol, Los Angeles, CA 90095 USA
[2] Dept Pediat, Div Hematol Oncol, Los Angeles, CA 90095 USA
[3] Eli & Edythe Broad Ctr Regenerat Med & Stem Cell, Los Angeles, CA 90095 USA
[4] David Geffen Sch Med, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
关键词
PRIMORDIAL GERM-CELLS; SPECIFICATION; DIFFERENTIATION; FATE; LINEAGE; GENE; INDUCTION; DYNAMICS; MONKEYS;
D O I
10.1016/j.scr.2017.04.005
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Human fertility is dependent upon the correct establishment and differentiation of the germline. This is because no other cell type in the body is capable of passing a genome and epigenome from parent to child. Terminally differentiated germline cells in the adult testis and ovary are called gametes. However the initial specification of germline cells occurs in the embryo around the time of gastrulation. Most of our knowledge regarding the cell and molecular events that govern human germline specification involves extrapolating scientific principles from model organisms most notably the mouse. However recent work using next generation sequencing gene editing and differentiation of germline cells from pluripotent stem cells has revealed that the core molecular mechanisms that regulate human germline development are different from rodents. Here we will discuss the major molecular pathways required for human germline differentiation and how pluripotent stem cells have revolutionized our ability to study the earliest steps in human embryonic lineage specification in order to understand human fertility. (C) 2017 The Authors. Published by Elsevier BV
引用
收藏
页码:187 / 192
页数:6
相关论文
共 50 条
  • [31] Pluripotent Stem Cells and Disease Modeling
    Colman, Alan
    Dreesen, Oliver
    CELL STEM CELL, 2009, 5 (03) : 244 - 247
  • [32] Modeling Cancer with Pluripotent Stem Cells
    Gingold, Julian
    Zhou, Ruoji
    Lemischka, Ihor R.
    Lee, Dung-Fang
    TRENDS IN CANCER, 2016, 2 (09): : 485 - 494
  • [33] Modeling Preeclampsia Using Human Induced Pluripotent Stem Cells.
    Horii, Mariko
    Bui, Tony
    Touma, Ojeni
    Laurent, Louise C.
    Parast, Mana
    REPRODUCTIVE SCIENCES, 2020, 27 (SUPPL 1) : 114A - 115A
  • [34] MODELING TROPHECTODERM TO CYTOTROPHOBLAST TRANSITION WITH NAIVE HUMAN PLURIPOTENT STEM CELLS
    Io, Shingo
    Kondoh, Eiji
    Takashima, Yasuhiro
    Mandai, Masaki
    PLACENTA, 2021, 112 : E27 - E28
  • [35] Human Induced Pluripotent Stem Cells for Inherited Cardiovascular Diseases Modeling
    Jiang, Wenjian
    Lan, Feng
    Zhang, Hongjia
    CURRENT STEM CELL RESEARCH & THERAPY, 2016, 11 (07) : 533 - 541
  • [36] Modeling placental development and disease using human pluripotent stem cells
    Morey, Robert
    Bui, Tony
    Fisch, Kathleen M.
    Horii, Mariko
    PLACENTA, 2023, 141 : 18 - 25
  • [37] Modeling Fragile X Syndrome Using Human Pluripotent Stem Cells
    Mor-Shaked, Hagar
    Eiges, Rachel
    GENES, 2016, 7 (10):
  • [38] Modeling of Menkes disease via human induced pluripotent stem cells
    Suh, Ji-Hoon
    Kim, Dongkyu
    Kim, Hyemin
    Helfman, David M.
    Choi, Jin-Ho
    Lee, Beom Hee
    Yoo, Han-Wook
    Han, Yong-Mahn
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2014, 444 (03) : 311 - 318
  • [39] High-Fidelity Modeling of Human Microglia with Pluripotent Stem Cells
    Jiang, Peng
    Turkalj, Luka
    Xu, Ranjie
    CELL STEM CELL, 2020, 26 (05) : 629 - 631
  • [40] Pancreatic Diseases: Genetics and Modeling Using Human Pluripotent Stem Cells
    Lee, Yuri
    Lee, Kihyun
    INTERNATIONAL JOURNAL OF STEM CELLS, 2024, 17 (03) : 253 - 269